3-torsion Subgroups of Jacobians of Plane Quartics (2024)

Elvira LupoianandJames Rawson

Abstract.

In this paper we give an algorithm to find the 3-torsion subgroup of the Jacobian of a smooth plane quartic curve. We describe 3limit-from33-3 -torsion points in terms of cubics which triply intersect the curve, and use this to define a system of equations whose solution set corresponds to the coefficients of these cubics.We compute the points of this zero-dimensional, degree 728728728728 scheme first by approximation, using hom*otopy continuation and Newton-Raphson, and then using lattice reduction or continued fractions to obtain accurate expressions for these points.We describe how the Galois structure of the field of definition of the 3333-torsion subgroup can be used to compute local conductor exponents, including at p=2𝑝2p=2italic_p = 2.

Key words and phrases:

Torsion, Jacobians, Plane Quartics, Conductors, LLL, hom*otopy Continuation

2000 Mathematics Subject Classification:

11Y60 (primary), 11G30, 11Y50

Both authors are supported by the Warwick Mathematics Institute Center for Doctoral Training, and gratefully acknowledge the funding from the UK Engineering and Physical Sciences Research Council. The first named author is supported by the grant EP/V520226/1. The second named author is supported by the grant EP/W523793/1.

1. Introduction

The celebrated result of Mazur [17] gives a complete classification of rational torsion subgroups of elliptic curves. The general study of torsion of abelian varieties is considered out of reach. An interesting variant of this question could be the study of nlimit-from𝑛n-italic_n -torsion points, for a fixed natural number n𝑛nitalic_n.For Jacobians of genus 1 curves, this is a largely elementary problem, since explicit equations are known for the Jacobian (as it is an elliptic curve) and the group law is accessible. For Jacobians of higher genus curves, the problem becomes much more difficult. Perhaps the clearest description is that of 2limit-from22-2 -torsion, since for the hyperelliptic curves, it can be easily deduced from the Weierstrass model, and for non-hyperelliptic curves 2222-torsion points correspond to multi-tangent hyperplane to the curve, as described in [11]. In [5], an explicit description of 3limit-from33-3 -torsion is derived for Jacobians of genus 2222 curves. This is generalised in [15], for hyperelliptic curves of genus 3333. For hyperelliptic curves, such description of torsion can be obtained using a Weierstrass model for the curve and careful analysis of Riemann-Roch spaces. However, when the curve is not hyperelliptic, the description of torsion points tends to become more geometric.

Explicitly computing such torsion subgroups has important applications. For instance, it’s used for descent purposes in [5] and [6]; and also for conductor computations in [10].

In this note, we give a description of the 3-torsion of genus 3, non-hyperelliptic curves in terms of degree 3 curves meeting the original quartic in 4 places, each with multiplicity 3. As a consequence of this description, we are able to give equations for all of the 728=361728superscript361728=3^{6}-1728 = 3 start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT - 1 unramified covers of the curve with Galois group A3subscript𝐴3A_{3}italic_A start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT.

After rigidifying the configuration of a cubic and the genus 3 curve, we give a schema for calculating all such curves. Using numerical methods (hom*otopy continuation and Newton-Raphson), we find high-precision complex approximations to the cubics. The coefficients can be recognised as algebraic integers by algorithms like Lenstra-Lenstra-Lovász (LLL) or continued fraction methods on the minimal polynomial. The 3-torsion subgroup computed is then verified by reduction modulo primes. A similar method of computing torsion is described in [16] and [15].

We conclude by providing detailed examples in the cases of the Fermat quartic, x4+y4=1superscript𝑥4superscript𝑦41x^{4}+y^{4}=1italic_x start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT + italic_y start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT = 1, and the Klein quartic, x3y+y3+x=0superscript𝑥3𝑦superscript𝑦3𝑥0x^{3}y+y^{3}+x=0italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_y + italic_y start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_x = 0. For these curves we compute the conductor exponents by torsion methods, and compare against the value computed from their structure as modular curves. Symbolic calculations were carried out using the Magma software package [3] and numerics with Julia [1].

Our source code is available from the GitHub repository:

https://github.com/ElviraLupoian/PlaneQuartics3Torsion

2. Derivation

From now on, C𝐶Citalic_C will be a genus 3333, non-hyperelliptic, smooth, projective, geometrically integral curve, embedded into 2superscript2\mathbb{P}^{2}blackboard_P start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT via the canonical embedding. Denote by J𝐽Jitalic_J the Jacobian variety attached to C𝐶Citalic_C. We note that J𝐽Jitalic_J is isomorphic to the Picard group, and we regard its points as equivalence classes of degree zero divisor on the curve. Let [D]delimited-[]𝐷[D][ italic_D ] be a 3-torsion point of the Jacobian. As D𝐷Ditalic_D is degree 0, KC+D>0subscript𝐾𝐶𝐷0K_{C}+D>0italic_K start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT + italic_D > 0, so after fixing a choice of canonical divisor, K𝐾Kitalic_K, D𝐷Ditalic_D can be written as DKsuperscript𝐷𝐾D^{\prime}-Kitalic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_K, where both Dsuperscript𝐷D^{\prime}italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT and K𝐾Kitalic_K are effective. By assumption, 3D0similar-to3𝐷03D\sim 03 italic_D ∼ 0, so 3D3KCsimilar-to3superscript𝐷3subscript𝐾𝐶3D^{\prime}\sim 3K_{C}3 italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∼ 3 italic_K start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT. Sections of 3KC3subscript𝐾𝐶3K_{C}3 italic_K start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT are cubics, and so 3D3superscript𝐷3D^{\prime}3 italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT is the intersection of C𝐶Citalic_C with a plane cubic. As 3D3superscript𝐷3D^{\prime}3 italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT is the triple of an effective divisor, the cubic must meet C𝐶Citalic_C with multiplicity (a multiple of) 3 at every intersection point.

The divisor Dsuperscript𝐷D^{\prime}italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT has degree 4, and so moves (l(D)2𝑙superscript𝐷2l(D^{\prime})\geq 2italic_l ( italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ≥ 2). We may, therefore, assume Dsuperscript𝐷D^{\prime}italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT contains a flex. By change of coordinates, it can further be assumed this flex is at (X:Y:Z)=(0:1:0)=P(X:Y:Z)=(0:1:0)=P( italic_X : italic_Y : italic_Z ) = ( 0 : 1 : 0 ) = italic_P with tangent line Z=0𝑍0Z=0italic_Z = 0. Functions vanishing to order 3 at this point lie in the ideal (Z,X3)𝑍superscript𝑋3(Z,X^{3})( italic_Z , italic_X start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ), and so the class of cubics to be considered is those in long Weierstrass form (in the affine chart Z=1𝑍1Z=1italic_Z = 1).

Not all cubics of this form give rise to non-trivial torsion elements, however. If DK0similar-tosuperscript𝐷𝐾0D^{\prime}-K\sim 0italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_K ∼ 0, then Dsuperscript𝐷D^{\prime}italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT is a canonical divisor and so the intersection of C𝐶Citalic_C with a line, and it contains P𝑃Pitalic_P. The only lines through this point are the lines of constant x𝑥xitalic_x, hence cubics that are (xa)3superscript𝑥𝑎3(x-a)^{3}( italic_x - italic_a ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT must be ruled out. One way to do this is to assume that at least one coefficient of y𝑦yitalic_y is non-zero, although this may exclude some desired cubics.

If DPsuperscript𝐷𝑃D^{\prime}-Pitalic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_P is not a special divisor, then this representation is unique; if D1KD2Ksimilar-tosuperscriptsubscript𝐷1𝐾superscriptsubscript𝐷2𝐾D_{1}^{\prime}-K\sim D_{2}^{\prime}-Kitalic_D start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_K ∼ italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_K, then D1PD2Psimilar-tosuperscriptsubscript𝐷1𝑃superscriptsubscript𝐷2𝑃D_{1}^{\prime}-P\sim D_{2}^{\prime}-Pitalic_D start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_P ∼ italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_P, and so there is equality of divisors as neither moves. As the divisors are the same, the cubics cutting them out must be the same up to scaling.

If DPsuperscript𝐷𝑃D^{\prime}-Pitalic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_P is a special divisor, then it can be written as KQsuperscript𝐾𝑄K^{\prime}-Qitalic_K start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_Q, for some canonical divisor Ksuperscript𝐾K^{\prime}italic_K start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT and point Q𝑄Qitalic_Q. It follows that, up to linear equivalence, D=PQ𝐷𝑃𝑄D=P-Qitalic_D = italic_P - italic_Q, and so 3D=3P3Q03𝐷3𝑃3𝑄similar-to03D=3P-3Q\sim 03 italic_D = 3 italic_P - 3 italic_Q ∼ 0. This shows Q𝑄Qitalic_Q is a flex. The tangent to Q𝑄Qitalic_Q meets C𝐶Citalic_C at another point, R𝑅Ritalic_R, and the divisors equivalent to 3Q3𝑄3Q3 italic_Q are the intersection of C𝐶Citalic_C with lines through R𝑅Ritalic_R. As 3P3Qsimilar-to3𝑃3𝑄3P\sim 3Q3 italic_P ∼ 3 italic_Q, the tangent to P𝑃Pitalic_P must meet C𝐶Citalic_C again at R𝑅Ritalic_R. So as long as C𝐶Citalic_C has a flex whose corresponding flex line does not meet another in this way, this method will compute all non-trivial three torsion, and find unique expressions for each element.

This method can be adapted for P𝑃Pitalic_P not a flex, for instance if such a flex does not exist or to make use of a rational point. In this case, the cubics to be considered are those of the form a1(y2αx2y)+a2xy+a3y+a4x3+a5x2+a6x+a7subscript𝑎1superscript𝑦2𝛼superscript𝑥2𝑦subscript𝑎2𝑥𝑦subscript𝑎3𝑦subscript𝑎4superscript𝑥3subscript𝑎5superscript𝑥2subscript𝑎6𝑥subscript𝑎7a_{1}(y^{2}-\alpha x^{2}y)+a_{2}xy+a_{3}y+a_{4}x^{3}+a_{5}x^{2}+a_{6}x+a_{7}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_α italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y ) + italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_x italic_y + italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_y + italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT italic_x + italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT, where α𝛼\alphaitalic_α is a constant depending on the curvature of C𝐶Citalic_C at P𝑃Pitalic_P.Thus we have proved the following.

Theorem 1.

Let C𝐶Citalic_C be a smooth, projective, geometrically integral, non-hyperelliptic curve of genus 3333, defined over a number field and canonically embedded in 2superscript2\mathbb{P}^{2}blackboard_P start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Assume that C𝐶Citalic_C has a flex at (0:1:0)normal-:01normal-:0(0:1:0)( 0 : 1 : 0 ), with tangent line Z=0𝑍0Z=0italic_Z = 0, then the 3limit-from33-3 -torsion points of it’s Jacobian correspond to cubics of the form

a1y2+a2xy+a3y+a4x3+a5x2+a6x+a7subscript𝑎1superscript𝑦2subscript𝑎2𝑥𝑦subscript𝑎3𝑦subscript𝑎4superscript𝑥3subscript𝑎5superscript𝑥2subscript𝑎6𝑥subscript𝑎7a_{1}y^{2}+a_{2}xy+a_{3}y+a_{4}x^{3}+a_{5}x^{2}+a_{6}x+a_{7}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_x italic_y + italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_y + italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT italic_x + italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT

which intersect the curve with multiplicities divisible by 3333. Moreover, this correspondence preserves the Galois action.

This description of 3333-torsion points allows us to derive equations, whose solution set represents coefficients of cubics of the above form.

2.1. Scheme of 3333-torsion points

Let C𝐶Citalic_C be a curve as above, with an affine chart given by f(x,y)=0𝑓𝑥𝑦0f\left(x,y\right)=0italic_f ( italic_x , italic_y ) = 0. Suppose that cubics corresponding to 3333-torsion points on the Jacobian J𝐽Jitalic_J are of the form

α1y2+α2xy+α3y+α4x3+α5x2+α6x+α7subscript𝛼1superscript𝑦2subscript𝛼2𝑥𝑦subscript𝛼3𝑦subscript𝛼4superscript𝑥3subscript𝛼5superscript𝑥2subscript𝛼6𝑥subscript𝛼7\alpha_{1}y^{2}+\alpha_{2}xy+\alpha_{3}y+\alpha_{4}x^{3}+\alpha_{5}x^{2}+%\alpha_{6}x+\alpha_{7}italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_x italic_y + italic_α start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_y + italic_α start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_α start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_α start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT italic_x + italic_α start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT

and we assume that at least one of α1,α2,α3subscript𝛼1subscript𝛼2subscript𝛼3\alpha_{1},\alpha_{2},\alpha_{3}italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_α start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT is non-zero. We describe the case when α10subscript𝛼10\alpha_{1}\neq 0italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≠ 0 and derive a system of equations whose solutions parameterise α2,,α7subscript𝛼2subscript𝛼7\alpha_{2},\ldots,\alpha_{7}italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_α start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT. Other cases are very similar.

We want to find (a1,,a6)subscript𝑎1subscript𝑎6\left(a_{1},\ldots,a_{6}\right)( italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT ) such that the plane cubic defined by

y2+a1xy+a2y+a3x3+a4x2+a5x+a6superscript𝑦2subscript𝑎1𝑥𝑦subscript𝑎2𝑦subscript𝑎3superscript𝑥3subscript𝑎4superscript𝑥2subscript𝑎5𝑥subscript𝑎6y^{2}+a_{1}xy+a_{2}y+a_{3}x^{3}+a_{4}x^{2}+a_{5}x+a_{6}italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_x italic_y + italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_y + italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT italic_x + italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT

intersects the curve at 3333 points, each with multiplicity 3333. Observe that the above gives an expression y2=g(x,y)superscript𝑦2𝑔𝑥𝑦y^{2}=g\left(x,y\right)italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_g ( italic_x , italic_y ), and the monomials of g𝑔gitalic_g are not divisible by y2superscript𝑦2y^{2}italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. The equation defining our affine quartic can be viewed as an equation in y𝑦yitalic_y, and it’s of the from

f(y)=s1(x)y4+s2(x)y3+s3(x)y2+s4(x)y+s5(x)𝑓𝑦subscript𝑠1𝑥superscript𝑦4subscript𝑠2𝑥superscript𝑦3subscript𝑠3𝑥superscript𝑦2subscript𝑠4𝑥𝑦subscript𝑠5𝑥f(y)=s_{1}(x)y^{4}+s_{2}(x)y^{3}+s_{3}(x)y^{2}+s_{4}(x)y+s_{5}(x)italic_f ( italic_y ) = italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x ) italic_y start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT + italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x ) italic_y start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_s start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_x ) italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_s start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ( italic_x ) italic_y + italic_s start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT ( italic_x )

with si(x)[x]subscript𝑠𝑖𝑥delimited-[]𝑥s_{i}(x)\in\mathbb{Q}[x]italic_s start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x ) ∈ blackboard_Q [ italic_x ]. The intersection of the two is be described by

f(y)𝑓𝑦\displaystyle f(y)italic_f ( italic_y )=s1(x)g(x,y)2+s2(x)g(x,y)y+s3(x)g(x,y)2+s4(x)y+s5(x)absentsubscript𝑠1𝑥𝑔superscript𝑥𝑦2subscript𝑠2𝑥𝑔𝑥𝑦𝑦subscript𝑠3𝑥𝑔superscript𝑥𝑦2subscript𝑠4𝑥𝑦subscript𝑠5𝑥\displaystyle=s_{1}(x)g(x,y)^{2}+s_{2}(x)g(x,y)y+s_{3}(x)g(x,y)^{2}+s_{4}(x)y+%s_{5}(x)= italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x ) italic_g ( italic_x , italic_y ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x ) italic_g ( italic_x , italic_y ) italic_y + italic_s start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_x ) italic_g ( italic_x , italic_y ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_s start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ( italic_x ) italic_y + italic_s start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT ( italic_x )
=t1(x)y2+t2(x)y+t3(x)absentsubscript𝑡1𝑥superscript𝑦2subscript𝑡2𝑥𝑦subscript𝑡3𝑥\displaystyle=t_{1}(x)y^{2}+t_{2}(x)y+t_{3}(x)= italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x ) italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x ) italic_y + italic_t start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_x )

for some ti[a1,,a6][x]subscript𝑡𝑖subscript𝑎1subscript𝑎6delimited-[]𝑥t_{i}\in\mathbb{Q}[a_{1},\ldots,a_{6}][x]italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ blackboard_Q [ italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT ] [ italic_x ]. We repeat this to eliminate the y2superscript𝑦2y^{2}italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT monomial in the above expression to obtain

f(y)=u1(x)y+u2(x)𝑓𝑦subscript𝑢1𝑥𝑦subscript𝑢2𝑥f(y)=u_{1}(x)y+u_{2}(x)italic_f ( italic_y ) = italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x ) italic_y + italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x )

and hence the above gives us an expression for y𝑦yitalic_y. Substituting u2/u1subscript𝑢2subscript𝑢1-u_{2}/u_{1}- italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT / italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT for y𝑦yitalic_y in the cubic gives us a degree 9999 polynomial h(x)𝑥h(x)italic_h ( italic_x ), and to ensure that the points of the intersection of our cubic and quartic occur with multiplicity 3333, we require hhitalic_h to be the cube of a degree 3333 polynomial in x𝑥xitalic_x, that is,

h(x)=a10(x3+a7x2+a8x+a9)3𝑥subscript𝑎10superscriptsuperscript𝑥3subscript𝑎7superscript𝑥2subscript𝑎8𝑥subscript𝑎93h(x)=a_{10}(x^{3}+a_{7}x^{2}+a_{8}x+a_{9})^{3}italic_h ( italic_x ) = italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT italic_x + italic_a start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT

and equating the coefficients of the above expression gives 10101010 equations in a1,,a10subscript𝑎1subscript𝑎10a_{1},\ldots,a_{10}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT. Moreover, to avoid singular solutions, we require that u1subscript𝑢1u_{1}italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and u2subscript𝑢2u_{2}italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT have no common factors, which can be imposed by adding the equation

a11Res(u1,u2)+1=0subscript𝑎11Ressubscript𝑢1subscript𝑢210a_{11}\text{Res}\left(u_{1},u_{2}\right)+1=0italic_a start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT Res ( italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + 1 = 0

to our system, where Res(u1,u2)Ressubscript𝑢1subscript𝑢2\text{Res}(u_{1},u_{2})Res ( italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) denotes the resultant of the two polynomials.

Theorem 2.

Let C𝐶Citalic_C be a curve as in theorem 1. The subgroup of 3limit-from33-3 -torsion points of its Jacobian is explicitly computable by a finite algorithm.

Theoretically, Gröbner basis techiques can be used to solve the system of equations outlined above. However, due to the degree of the scheme, this methodology is impractical. Instead, we employ a two step process. Firstly, we compute high precision complex approximations, using hom*otopy continuation and Newton-Raphson. We then obtain algebraic expressions for the points via lattice-reduction or continued fraction methods. This is outlined in the following sections.

3. Approximations and hom*otopy Continuation

Let f1,fnsubscript𝑓1subscript𝑓𝑛f_{1},\ldots f_{n}italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT be equations defining a zero-dimensional scheme, the points of which give the coefficients of our cubics. In this section we give an overview of how to obtain high precision approximations using the classical Newton-Raphson method and hom*otopy continuation. We begin with a brief summary of the Newton-Raphson method, a comprehensive overview can be found in [21, Page 298].

Consider the nsuperscript𝑛\mathbb{C}^{n}blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT valued function defined by f1,,fnsubscript𝑓1subscript𝑓𝑛f_{1},\ldots,f_{n}italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT,

F=(f1,,fn):nn:𝐹subscript𝑓1subscript𝑓𝑛superscript𝑛superscript𝑛F=\left(f_{1},\ldots,f_{n}\right):\mathbb{C}^{n}\longrightarrow\mathbb{C}^{n}italic_F = ( italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) : blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ⟶ blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT.

Let dF𝑑𝐹dFitalic_d italic_F be the Jacobian matrix of F𝐹Fitalic_F and suppose 𝐱0subscript𝐱0\mathbf{x}_{0}bold_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is an approximate solution of F𝐹Fitalic_F with dF(𝐱0)𝑑𝐹subscript𝐱0dF\left(\mathbf{x}_{0}\right)italic_d italic_F ( bold_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) invertible.

For each integer k1𝑘1k\geq 1italic_k ≥ 1, define

𝐱k=𝐱k1dF(𝐱k1)1F(𝐱k1)subscript𝐱𝑘subscript𝐱𝑘1𝑑𝐹superscriptsubscript𝐱𝑘11𝐹subscript𝐱𝑘1\mathbf{x}_{k}=\mathbf{x}_{k-1}-dF\left(\mathbf{x}_{k-1}\right)^{-1}F\left(%\mathbf{x}_{k-1}\right)bold_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = bold_x start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT - italic_d italic_F ( bold_x start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_F ( bold_x start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT ).

If the initial approximation 𝐱0subscript𝐱0\mathbf{x}_{0}bold_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is good enough, the resulting sequence {𝐱k}k0subscriptsubscript𝐱𝑘𝑘0\{\mathbf{x}_{k}\}_{k\geq 0}{ bold_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_k ≥ 0 end_POSTSUBSCRIPT converges to a root of F𝐹Fitalic_F, with each iterate having increased precision. For our computations, we efficiently implemented Newton-Raphson in Julia.

We compute the required initial approximations using hom*otopy continuation and its implementation in Julia (see [4]).

3.1. hom*otopy Continuation

hom*otopy continuation is a method for numerically approximating the solutions of a system of polynomial equations by deforming the known solutions of a similar system. In this subsection we give a sketch of the idea, a detailed explanation of this theory can be found in [23] .

We denote by deg(F)=ideg(fi)deg𝐹subscriptproduct𝑖degsubscript𝑓𝑖\text{deg}\left(F\right)=\prod_{i}\text{deg}\left(f_{i}\right)deg ( italic_F ) = ∏ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT deg ( italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ), where deg(fi)degsubscript𝑓𝑖\text{deg}\left(f_{i}\right)deg ( italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) is the maximum degree of the monomials of fisubscript𝑓𝑖f_{i}italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. Let G𝐺Gitalic_G be a system of n𝑛nitalic_n polynomials in a1,,ansubscript𝑎1subscript𝑎𝑛a_{1},\ldots,a_{n}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, with exactly deg(F)deg𝐹\text{deg}\left(F\right)deg ( italic_F ) solutions, all of which are known or easily computable. This will be known as a start system. The standard hom*otopy of G𝐺Gitalic_G and F𝐹Fitalic_F is a function

H:n×[0,1]n:𝐻superscript𝑛01superscript𝑛\displaystyle H:\mathbb{C}^{n}\times\left[0,1\right]\longrightarrow\mathbb{C}^%{n}italic_H : blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT × [ 0 , 1 ] ⟶ blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT
H(𝐱,t)=(1t)G(𝐱)+tF(𝐱)𝐻𝐱𝑡1𝑡𝐺𝐱𝑡𝐹𝐱\displaystyle H\left(\mathbf{x},t\right)\ =\ \left(1-t\right)G\left(\mathbf{x}%\right)+tF\left(\mathbf{x}\right)italic_H ( bold_x , italic_t ) = ( 1 - italic_t ) italic_G ( bold_x ) + italic_t italic_F ( bold_x )

Fix N𝑁N\in\mathbb{N}italic_N ∈ blackboard_N, and define Hs(𝐱)=H(𝐱,s/N)subscript𝐻𝑠𝐱𝐻𝐱𝑠𝑁H_{s}\left(\mathbf{x}\right)=H\left(\mathbf{x},s/N\right)italic_H start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ( bold_x ) = italic_H ( bold_x , italic_s / italic_N ) for s[0,N]𝑠0𝑁s\in\left[0,N\right]\cap\mathbb{N}italic_s ∈ [ 0 , italic_N ] ∩ blackboard_N. For N𝑁Nitalic_N large enough, the solutions of Hs(𝐱)subscript𝐻𝑠𝐱H_{s}\left(\mathbf{x}\right)italic_H start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ( bold_x ) are good approximations of the solutions of Hs+1(𝐱)subscript𝐻𝑠1𝐱H_{s+1}\left(\mathbf{x}\right)italic_H start_POSTSUBSCRIPT italic_s + 1 end_POSTSUBSCRIPT ( bold_x ), and their precision can be increased by using Newton-Raphson. The solutions of H0(𝐱)=G(𝐱)subscript𝐻0𝐱𝐺𝐱H_{0}\left(\mathbf{x}\right)=G\left(\mathbf{x}\right)italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( bold_x ) = italic_G ( bold_x ) are known, and they define paths to approximate solutions of HN(𝐱)=F(𝐱)subscript𝐻𝑁𝐱𝐹𝐱H_{N}\left(\mathbf{x}\right)=F\left(\mathbf{x}\right)italic_H start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ( bold_x ) = italic_F ( bold_x ).

Notably, given any system F𝐹Fitalic_F, a start system (and its solutions) can always be computed. hom*otopy continuation is efficiently implemented in the Julia package hom*otopyContinuation.jl (see [4]). This implementation gives approximates solutions which are accurate to 16 decimal places. For our computations we used the approximate solutions and 200 iterations of Newton-Raphson to obtain an accuracy of 600 decimal places.

4. Lattice-Reduction and Continued Fractions Techniques

Let 𝐱=(x1,,xn)𝐱subscript𝑥1subscript𝑥𝑛\mathbf{x}=\left(x_{1},\ldots,x_{n}\right)bold_x = ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) be a point on a scheme for which we have a complex approximation 𝐚=(a1,,an)𝐚subscript𝑎1subscript𝑎𝑛\mathbf{a}=\left(a_{1},\ldots,a_{n}\right)bold_a = ( italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) of arbitrarily large precision k𝑘kitalic_k.

One way of computing minimal polynomials is by searching for short vectors in an appropriately defined lattice. Short vectors can be computed using the Lenstra-Lenstra-Lovász lattice reduction algorithm (LLL) which, given a lattice, returns a reduced basis whose vectors have small norms, see [7, Section 2.6]. This is a standard technique for computing short vectors, for instance see [7, Section 2.7.2] or [19, Chapter 6.1]. To compute an LLL- basis we use the Julia implementation provided by LLLplus.jl.

When computing the shortest vector in an appropriately defined lattice is impractical, we can also attempt to find the minimal polynomial by using our approximations and continued fractions to compute the \mathbb{Q}blackboard_Q-rational polynomial whose roots are all of the i𝑖iitalic_ith coordinates of points on the scheme.

4.1. Lattice Reduction and Minimal Polynomials

We give an overview of the theory required to compute our minimal polynomials. This was necessary in our computations as we made use of the Julia’s LLL implementation, which was significantly faster then using Magma’s built in commands, such as MinimalPolynomial().

Fix 1in1𝑖𝑛1\leq i\leq n1 ≤ italic_i ≤ italic_n and let θ=xi𝜃subscript𝑥𝑖\theta=x_{i}italic_θ = italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and α=ai𝛼subscript𝑎𝑖\alpha=a_{i}italic_α = italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. We want to find dθsubscript𝑑𝜃d_{\theta}\in\mathbb{N}italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT ∈ blackboard_N and c0,,cdθsubscript𝑐0subscript𝑐subscript𝑑𝜃c_{0},\ldots,c_{d_{\theta}}\in\mathbb{Z}italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , … , italic_c start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ∈ blackboard_Z such that

cdθθdθ++c1θ+c0=0subscript𝑐subscript𝑑𝜃superscript𝜃subscript𝑑𝜃subscript𝑐1𝜃subscript𝑐00c_{d_{\theta}}\theta^{d_{\theta}}+\ldots+c_{1}\theta+c_{0}=0italic_c start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_θ start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUPERSCRIPT + … + italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_θ + italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0.

We assume that the imaginary part of α𝛼\alphaitalic_α is very small, and hence we are probably approximating a real number θ𝜃\thetaitalic_θ. At the end of this section, we explain how the method described below can be adapted when θ𝜃\thetaitalic_θ is not real.

Let α=Real(α)𝛼Real𝛼\alpha=\text{Real}\left(\alpha\right)\in\mathbb{R}italic_α = Real ( italic_α ) ∈ blackboard_R and fix a constant C=10k𝐶superscript10superscript𝑘C=10^{k^{\prime}}italic_C = 10 start_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT, for some large natural number k<ksuperscript𝑘𝑘k^{\prime}<kitalic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT < italic_k, such that

[Cαi]Cθi 1delimited-∣∣delimited-[]𝐶superscript𝛼𝑖𝐶superscript𝜃𝑖1\mid\left[C\cdot\alpha^{i}\right]-C\cdot\theta^{i}\mid\ \leq\ 1∣ [ italic_C ⋅ italic_α start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ] - italic_C ⋅ italic_θ start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ∣ ≤ 1 for all 0idθ0𝑖subscript𝑑𝜃0\leq i\leq d_{\theta}0 ≤ italic_i ≤ italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT

where [x]delimited-[]𝑥\left[x\right][ italic_x ] denotes the integer part of a real number x𝑥xitalic_x. Let \mathcal{L}caligraphic_L be the lattice generated by the columns of the (dθ+1)×(dθ+1)subscript𝑑𝜃1subscript𝑑𝜃1\left(d_{\theta}+1\right)\times\left(d_{\theta}+1\right)( italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT + 1 ) × ( italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT + 1 ) matrix

A=(100000010[Cαdθ][Cα][C])=(vdθ,,v1,v0).𝐴matrix100000010delimited-[]𝐶superscript𝛼subscript𝑑𝜃delimited-[]𝐶𝛼delimited-[]𝐶subscript𝑣subscript𝑑𝜃subscript𝑣1subscript𝑣0A=\begin{pmatrix}1&\ldots&0&0\\0&\ldots&0&0\\\vdots&\ddots&\vdots&\vdots\\0&\ldots&1&0\\\left[C\alpha^{d_{\theta}}\right]&\ldots&\left[C\alpha\right]&\left[C\right]\\\end{pmatrix}=\left(v_{d_{\theta}},\ldots,v_{1},v_{0}\right).italic_A = ( start_ARG start_ROW start_CELL 1 end_CELL start_CELL … end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL … end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL start_CELL ⋱ end_CELL start_CELL ⋮ end_CELL start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL … end_CELL start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL [ italic_C italic_α start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ] end_CELL start_CELL … end_CELL start_CELL [ italic_C italic_α ] end_CELL start_CELL [ italic_C ] end_CELL end_ROW end_ARG ) = ( italic_v start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUBSCRIPT , … , italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) .

Define γ=cdθ[Cαdθ]++c1[Cα]+c0[C]𝛾subscript𝑐subscript𝑑𝜃delimited-[]𝐶superscript𝛼subscript𝑑𝜃subscript𝑐1delimited-[]𝐶𝛼subscript𝑐0delimited-[]𝐶\gamma=c_{d_{\theta}}\left[C\alpha^{d_{\theta}}\right]+\ldots+c_{1}\left[C%\alpha\right]+c_{0}\left[C\right]italic_γ = italic_c start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ italic_C italic_α start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ] + … + italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT [ italic_C italic_α ] + italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT [ italic_C ] and observe that

𝐜=(cdθc1γ)=cdθvdθ++c0v0.𝐜matrixsubscript𝑐subscript𝑑𝜃subscript𝑐1𝛾subscript𝑐subscript𝑑𝜃subscript𝑣subscript𝑑𝜃subscript𝑐0subscript𝑣0\mathbf{c}=\begin{pmatrix}c_{d_{\theta}}\\\vdots\\c_{1}\\\gamma\end{pmatrix}=c_{d_{\theta}}v_{d_{\theta}}+\ldots+c_{0}v_{0}\in\mathcal{%L}.bold_c = ( start_ARG start_ROW start_CELL italic_c start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_γ end_CELL end_ROW end_ARG ) = italic_c start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUBSCRIPT + … + italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ caligraphic_L .

The vector of coefficients of the required polynomial 𝐜=(cdθ,,c0)Tsubscript𝐜superscriptsubscript𝑐subscript𝑑𝜃subscript𝑐0𝑇\mathbf{c}_{\infty}=\left(c_{d_{\theta}},\ldots,c_{0}\right)^{T}bold_c start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT = ( italic_c start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUBSCRIPT , … , italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT can be recovered from 𝐜𝐜\mathbf{c}bold_c, by setting

c0=1C(γ(cdθ[Cαdθ]++c1[Cα]))subscript𝑐01𝐶𝛾subscript𝑐subscript𝑑𝜃delimited-[]𝐶superscript𝛼subscript𝑑𝜃subscript𝑐1delimited-[]𝐶𝛼c_{0}=\frac{1}{C}\left(\gamma-\left(c_{d_{\theta}}\left[C\alpha^{d_{\theta}}%\right]+\ldots+c_{1}\left[C\alpha\right]\right)\right)italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG italic_C end_ARG ( italic_γ - ( italic_c start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ italic_C italic_α start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ] + … + italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT [ italic_C italic_α ] ) ).

The norm of 𝐜𝐜\mathbf{c}bold_c is bounded by the norm of 𝐜subscript𝐜\mathbf{c_{\infty}}bold_c start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT as follows,

𝐜norm𝐜\displaystyle||\mathbf{c}||| | bold_c | |=cdθ2++c12+γ2absentsuperscriptsubscript𝑐subscript𝑑𝜃2superscriptsubscript𝑐12superscript𝛾2\displaystyle=\sqrt{c_{d_{\theta}}^{2}+\ldots+c_{1}^{2}+\gamma^{2}}= square-root start_ARG italic_c start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + … + italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_γ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG
cdθ2++c12+(γCcdθθdθCc1θCc0)2absentsuperscriptsubscript𝑐subscript𝑑𝜃2superscriptsubscript𝑐12superscript𝛾𝐶subscript𝑐subscript𝑑𝜃superscript𝜃subscript𝑑𝜃𝐶subscript𝑐1𝜃𝐶subscript𝑐02\displaystyle\leq\sqrt{c_{d_{\theta}}^{2}+\ldots+c_{1}^{2}+\left(\gamma-Cc_{d_%{\theta}}\theta^{d_{\theta}}-\ldots-Cc_{1}\theta-Cc_{0}\right)^{2}}≤ square-root start_ARG italic_c start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + … + italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( italic_γ - italic_C italic_c start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_θ start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - … - italic_C italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_θ - italic_C italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG
cdθ2++c12+(cdθ([Cadθ]Cθdθ)++c1([Ca]Cθ)+c0([C]C))2absentsuperscriptsubscript𝑐subscript𝑑𝜃2superscriptsubscript𝑐12superscriptsubscript𝑐subscript𝑑𝜃delimited-[]𝐶superscript𝑎subscript𝑑𝜃𝐶superscript𝜃subscript𝑑𝜃subscript𝑐1delimited-[]𝐶𝑎𝐶𝜃subscript𝑐0delimited-[]𝐶𝐶2\displaystyle\leq\sqrt{c_{d_{\theta}}^{2}+\ldots+c_{1}^{2}+\left(c_{d_{\theta}%}(\left[Ca^{d_{\theta}}\right]-C\theta^{d_{\theta}})+\ldots+c_{1}(\left[Ca%\right]-C\theta)+c_{0}(\left[C\right]-C)\right)^{2}}≤ square-root start_ARG italic_c start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + … + italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( italic_c start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( [ italic_C italic_a start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ] - italic_C italic_θ start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) + … + italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( [ italic_C italic_a ] - italic_C italic_θ ) + italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( [ italic_C ] - italic_C ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG
cdθ2++c12+(cdθ++c1+c0)2absentsuperscriptsubscript𝑐subscript𝑑𝜃2superscriptsubscript𝑐12superscriptsubscript𝑐subscript𝑑𝜃subscript𝑐1subscript𝑐02\displaystyle\leq\sqrt{c_{d_{\theta}}^{2}+\ldots+c_{1}^{2}+\left(c_{d_{\theta}%}+\ldots+c_{1}+c_{0}\right)^{2}}≤ square-root start_ARG italic_c start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + … + italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( italic_c start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUBSCRIPT + … + italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG
cdθ2++c12+(cdθ2++c12+c02)2absentsuperscriptsubscript𝑐subscript𝑑𝜃2superscriptsubscript𝑐12superscriptsuperscriptsubscript𝑐subscript𝑑𝜃2superscriptsubscript𝑐12superscriptsubscript𝑐022\displaystyle\leq\sqrt{c_{d_{\theta}}^{2}+\ldots+c_{1}^{2}+\left(c_{d_{\theta}%}^{2}+\ldots+c_{1}^{2}+c_{0}^{2}\right)^{2}}≤ square-root start_ARG italic_c start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + … + italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( italic_c start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + … + italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG
2(cdθ2++c12+c02)2=2𝐜2absent2superscriptsuperscriptsubscript𝑐subscript𝑑𝜃2superscriptsubscript𝑐12superscriptsubscript𝑐0222superscriptnormsubscript𝐜2\displaystyle\leq\sqrt{2\left(c_{d_{\theta}}^{2}+\ldots+c_{1}^{2}+c_{0}^{2}%\right)^{2}}=\sqrt{2}\ ||\ \mathbf{c}_{\infty}||^{2}≤ square-root start_ARG 2 ( italic_c start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + … + italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = square-root start_ARG 2 end_ARG | | bold_c start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT | | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT

and hence although 𝐜norm𝐜||\mathbf{c}||| | bold_c | | depends on the precision of the approximation, it is bounded by the fixed constant 2𝐜22superscriptnormsubscript𝐜2\sqrt{2}||\ \mathbf{c}_{\infty}||^{2}square-root start_ARG 2 end_ARG | | bold_c start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT | | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT.

As explained in [19, Page 68], heuristically the length of the shortest vector in \mathcal{L}caligraphic_L is approximately Δ()1dθ+1Δsuperscript1subscript𝑑𝜃1\Delta\left(\mathcal{L}\right)^{\frac{1}{d_{\theta}+1}}roman_Δ ( caligraphic_L ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT + 1 end_ARG end_POSTSUPERSCRIPT, where Δ()Δ\Delta\left(\mathcal{L}\right)roman_Δ ( caligraphic_L ) is the determinant of the lattice ksubscript𝑘\mathcal{L}_{k}caligraphic_L start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT. Thus, for a sufficiently large precision, the vector 𝐜𝐜\mathbf{c}bold_c is expected to be the shortest vector in the lattice, and of norm significantly smaller than the stated bound. In our case, Δ()=det(A)=C=10kΔdet𝐴𝐶superscript10superscript𝑘\Delta\left(\mathcal{L}\right)=\text{det}\left(A\right)=C=10^{k^{\prime}}roman_Δ ( caligraphic_L ) = det ( italic_A ) = italic_C = 10 start_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT; and so if the minimal polynomial has coefficients of order 10nsuperscript10𝑛10^{n}10 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT, k𝑘kitalic_k, ksuperscript𝑘k^{\prime}italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT are such that:

(dθ+1)102n10k/(dθ+1)subscript𝑑𝜃1superscript102𝑛superscript10superscript𝑘subscript𝑑𝜃1\left(d_{\theta}+1\right)10^{2n}\leq 10^{k^{\prime}/\left(d_{\theta}+1\right)}( italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT + 1 ) 10 start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT ≤ 10 start_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT / ( italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT + 1 ) end_POSTSUPERSCRIPT

then short vectors in \mathcal{L}caligraphic_L are a suitable candidates for the vector of coefficients.

When the imaginary part of α𝛼\alphaitalic_α is not small, our strategy is to simultaneously minimise both real and imaginary parts of the polynomial, and hence the same method can be applied to the lattice generated by the columns of

Ak=(100000010[CRe(αdθ)][CRe(α)][C][CIm(αdθ)][CIm(α)]0)subscript𝐴𝑘matrix100000010delimited-[]𝐶Resuperscript𝛼subscript𝑑𝜃delimited-[]𝐶Re𝛼delimited-[]𝐶delimited-[]𝐶Imsuperscript𝛼subscript𝑑𝜃delimited-[]𝐶Im𝛼0A_{k}=\begin{pmatrix}1&\ldots&0&0\\0&\ldots&0&0\\\vdots&\ddots&\vdots&\vdots\\0&\ldots&1&0\\\left[C\text{Re}\left(\alpha^{d_{\theta}}\right)\right]&\ldots&\left[C\text{Re%}\left(\alpha\right)\right]&\left[C\right]\\\left[C\text{Im}\left(\alpha^{d_{\theta}}\right)\right]&\ldots&\left[C\text{Im%}\left(\alpha\right)\right]&0\end{pmatrix}italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = ( start_ARG start_ROW start_CELL 1 end_CELL start_CELL … end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL … end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL start_CELL ⋱ end_CELL start_CELL ⋮ end_CELL start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL … end_CELL start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL [ italic_C Re ( italic_α start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) ] end_CELL start_CELL … end_CELL start_CELL [ italic_C Re ( italic_α ) ] end_CELL start_CELL [ italic_C ] end_CELL end_ROW start_ROW start_CELL [ italic_C Im ( italic_α start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) ] end_CELL start_CELL … end_CELL start_CELL [ italic_C Im ( italic_α ) ] end_CELL start_CELL 0 end_CELL end_ROW end_ARG )

where Re(x)Re𝑥\text{Re}\left(x\right)Re ( italic_x ) and Im(x)Im𝑥\text{Im}\left(x\right)Im ( italic_x ) denote the real and imaginary parts of x𝑥xitalic_x; and C=10k𝐶superscript10superscript𝑘C=10^{k^{\prime}}italic_C = 10 start_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT where k<ksuperscript𝑘𝑘k^{{}^{\prime}}<kitalic_k start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT < italic_k, is such that

[CRe(αi)]CRe(θi) 1delimited-∣∣delimited-[]𝐶Resuperscript𝛼𝑖𝐶Resuperscript𝜃𝑖1\mid\left[C\cdot\text{Re}\left(\alpha^{i}\right)\right]-C\cdot\text{Re}\left(%\theta^{i}\right)\mid\ \leq\ 1∣ [ italic_C ⋅ Re ( italic_α start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ) ] - italic_C ⋅ Re ( italic_θ start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ) ∣ ≤ 1 and [CIm(αi)]CIm(θi) 1delimited-∣∣delimited-[]𝐶Imsuperscript𝛼𝑖𝐶Imsuperscript𝜃𝑖1\mid\left[C\cdot\text{Im}\left(\alpha^{i}\right)\right]-C\cdot\text{Im}\left(%\theta^{i}\right)\mid\ \leq\ 1∣ [ italic_C ⋅ Im ( italic_α start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ) ] - italic_C ⋅ Im ( italic_θ start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ) ∣ ≤ 1

for all 0idθ0𝑖subscript𝑑𝜃0\leq i\leq d_{\theta}0 ≤ italic_i ≤ italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT.

Note that the above construction depends on dθsubscript𝑑𝜃d_{\theta}italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT, which we don’t a priori know. However, we can replace dθsubscript𝑑𝜃d_{\theta}italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT in the construction by any positive integer d𝑑ditalic_d and search for short vectors in the corresponding lattice. The strategy to find 𝐜𝐜\mathbf{c}bold_c is as follows; we begin with a candidate d𝑑ditalic_d for dθsubscript𝑑𝜃d_{\theta}italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT, starting with d=2𝑑2d=2italic_d = 2, and running through the natural numbers. If our candidate d𝑑ditalic_d is equal to dθsubscript𝑑𝜃d_{\theta}italic_d start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT, then the norm of the shortest vector is typically much smaller than the expected bound, and we identify it as a possible vector of coefficients.

Coefficient Relations

Given minimal polynomials (f1,,fn)subscript𝑓1subscript𝑓𝑛\left(f_{1},\ldots,f_{n}\right)( italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) of (x1,,xn)subscript𝑥1subscript𝑥𝑛\left(x_{1},\ldots,x_{n}\right)( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ), we want to find which combinations of roots correspond to points on the scheme.

We do this by searching for relations amongst our coefficients using lattice reduction. We show how a possible relation between x1subscript𝑥1x_{1}italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and x2subscript𝑥2x_{2}italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is computed. If α1,α2subscript𝛼1subscript𝛼2\alpha_{1},\alpha_{2}\in\mathbb{R}italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ blackboard_R, we search for b0,,bd1subscript𝑏0subscript𝑏subscript𝑑1b_{0},\ldots,b_{d_{1}}italic_b start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , … , italic_b start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT such that

bd1x2=bd11x1d11++b1x1+b0subscript𝑏subscript𝑑1subscript𝑥2subscript𝑏subscript𝑑11superscriptsubscript𝑥1subscript𝑑11subscript𝑏1subscript𝑥1subscript𝑏0-b_{d_{1}}x_{2}=b_{d_{1}-1}x_{1}^{d_{1}-1}+\ldots+b_{1}x_{1}+b_{0}- italic_b start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_b start_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 1 end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT + … + italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_b start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT

where d1subscript𝑑1d_{1}italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is the degree of the minimal polynomial of f1subscript𝑓1f_{1}italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. As in our search for minimal polynomials, such integers can be found by computing short vectors in the lattice generate by the columns of

(100000000010[Cα1d11][Cα1][Cα2][C])matrix100000000010delimited-[]𝐶superscriptsubscript𝛼1subscript𝑑11delimited-[]𝐶subscript𝛼1delimited-[]𝐶subscript𝛼2delimited-[]𝐶\begin{pmatrix}1&\ldots&0&0&0\\0&\ldots&0&0&0\\\vdots&\ddots&\vdots&\vdots&\vdots\\0&\ldots&0&1&0\\\left[C\alpha_{1}^{d_{1}-1}\right]&\ldots&\left[C\alpha_{1}\right]&\left[C%\alpha_{2}\right]&\left[C\right]\\\end{pmatrix}( start_ARG start_ROW start_CELL 1 end_CELL start_CELL … end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL … end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL start_CELL ⋱ end_CELL start_CELL ⋮ end_CELL start_CELL ⋮ end_CELL start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL … end_CELL start_CELL 0 end_CELL start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL [ italic_C italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT ] end_CELL start_CELL … end_CELL start_CELL [ italic_C italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ] end_CELL start_CELL [ italic_C italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ] end_CELL start_CELL [ italic_C ] end_CELL end_ROW end_ARG )

where C=10k𝐶superscript10superscript𝑘C=10^{k^{\prime}}italic_C = 10 start_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT and k<ksuperscript𝑘𝑘k^{\prime}<kitalic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT < italic_k is chosen similarly as before. If the imaginary parts of α1,α2subscript𝛼1subscript𝛼2\alpha_{1},\alpha_{2}italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are not both small, we instead search for short vectors in the lattice generated by the columns of

(100000000010[CRe(α1d11)][CRe(α1)][CRe(α2)][C][CIm(α1d11)][CIm(α1)][CIm(α2)]0)matrix100000000010delimited-[]𝐶Resuperscriptsubscript𝛼1subscript𝑑11delimited-[]𝐶Resubscript𝛼1delimited-[]𝐶Resubscript𝛼2delimited-[]𝐶delimited-[]𝐶Imsuperscriptsubscript𝛼1subscript𝑑11delimited-[]𝐶Imsubscript𝛼1delimited-[]𝐶Imsubscript𝛼20\begin{pmatrix}1&\ldots&0&0&0\\0&\ldots&0&0&0\\\vdots&\ddots&\vdots&\vdots&\vdots\\0&\ldots&0&1&0\\\left[C\text{Re}\left(\alpha_{1}^{d_{1}-1}\right)\right]&\ldots&\left[C\text{%Re}\left(\alpha_{1}\right)\right]&\left[C\text{Re}\left(\alpha_{2}\right)%\right]&\left[C\right]\\\left[C\text{Im}\left(\alpha_{1}^{d_{1}-1}\right)\right]&\ldots&\left[C\text{%Im}\left(\alpha_{1}\right)\right]&\left[C\text{Im}\left(\alpha_{2}\right)%\right]&0\end{pmatrix}( start_ARG start_ROW start_CELL 1 end_CELL start_CELL … end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL … end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL start_CELL ⋱ end_CELL start_CELL ⋮ end_CELL start_CELL ⋮ end_CELL start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL … end_CELL start_CELL 0 end_CELL start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL [ italic_C Re ( italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT ) ] end_CELL start_CELL … end_CELL start_CELL [ italic_C Re ( italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ] end_CELL start_CELL [ italic_C Re ( italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ] end_CELL start_CELL [ italic_C ] end_CELL end_ROW start_ROW start_CELL [ italic_C Im ( italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT ) ] end_CELL start_CELL … end_CELL start_CELL [ italic_C Im ( italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ] end_CELL start_CELL [ italic_C Im ( italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ] end_CELL start_CELL 0 end_CELL end_ROW end_ARG )

In all of our examples, for a given orbit of cubics, we were able to express all coefficients of the defining equations in terms of one fixed coefficient. Using these relations and the minimal polynomials, we verify their correctness by computing symbolically the roots and the corresponding points on the scheme, and verifying that these are solutions of the system of equations.

4.2. Continued Fractions and Minimal Polynomials

An alternative method for determining minimal polynomials is to use the theory of continued fractions. Let y1,,ydsubscript𝑦1subscript𝑦𝑑y_{1},...,y_{d}italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_y start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT be complex approximations to the roots of a rational monic polynomial of degree d𝑑ditalic_d. Using Vieta’s formulae [13], we can construct a monic polynomial of degree d𝑑ditalic_d whose roots are the yisubscript𝑦𝑖y_{i}italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. This polynomial will be an approximation to the original polynomial, and so it suffices to recognise the coefficients as rational numbers. The error propagation in this process is fairly tame, to first order, the relative error in the estimates is magnified by a factor of dn𝑑𝑛d-nitalic_d - italic_n in computing the coefficients. To see this, let the relative errors in each yisubscript𝑦𝑖y_{i}italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT be δisubscript𝛿𝑖\delta_{i}italic_δ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, then the absolute error in the coefficient of xnsuperscript𝑥𝑛x^{n}italic_x start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT is the following.

1i1idnnyi1(1+δi1)yidn(1+δidn)1i1idnnyi1yidnsubscript1subscript𝑖1subscript𝑖𝑑𝑛𝑛subscript𝑦subscript𝑖11subscript𝛿subscript𝑖1subscript𝑦subscript𝑖𝑑𝑛1subscript𝛿subscript𝑖𝑑𝑛subscript1subscript𝑖1subscript𝑖𝑑𝑛𝑛subscript𝑦subscript𝑖1subscript𝑦subscript𝑖𝑑𝑛\sum_{1\leq i_{1}\ldots i_{d-n}\leq n}y_{i_{1}}(1+\delta_{i_{1}})\ldots y_{i_{%d-n}}(1+\delta_{i_{d-n}})-\sum_{1\leq i_{1}\ldots i_{d-n}\leq n}y_{i_{1}}%\ldots y_{i_{d-n}}∑ start_POSTSUBSCRIPT 1 ≤ italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT … italic_i start_POSTSUBSCRIPT italic_d - italic_n end_POSTSUBSCRIPT ≤ italic_n end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( 1 + italic_δ start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) … italic_y start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT italic_d - italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( 1 + italic_δ start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT italic_d - italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) - ∑ start_POSTSUBSCRIPT 1 ≤ italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT … italic_i start_POSTSUBSCRIPT italic_d - italic_n end_POSTSUBSCRIPT ≤ italic_n end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT … italic_y start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT italic_d - italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT
=i1j1,,jdn1djkiyj1yjdn1yjδj(i1j1,,jdn1djkiyj1yjdn1yj)maxiδiabsentsubscript𝑖subscriptformulae-sequence1subscript𝑗1subscript𝑗𝑑𝑛1𝑑subscript𝑗𝑘𝑖subscript𝑦subscript𝑗1subscript𝑦subscript𝑗𝑑𝑛1subscript𝑦𝑗subscript𝛿𝑗subscript𝑖subscriptformulae-sequence1subscript𝑗1subscript𝑗𝑑𝑛1𝑑subscript𝑗𝑘𝑖subscript𝑦subscript𝑗1subscript𝑦subscript𝑗𝑑𝑛1subscript𝑦𝑗subscript𝑖subscript𝛿𝑖=\sum_{i}\sum_{\begin{subarray}{c}1\leq j_{1},\ldots,j_{d-n-1}\leq d\\j_{k}\neq i\end{subarray}}y_{j_{1}}\ldots y_{j_{d-n-1}}y_{j}\delta_{j}\leq%\left(\sum_{i}\sum_{\begin{subarray}{c}1\leq j_{1},\ldots,j_{d-n-1}\leq d\\j_{k}\neq i\end{subarray}}y_{j_{1}}\ldots y_{j_{d-n-1}}y_{j}\right)\max_{i}{%\delta_{i}}= ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∑ start_POSTSUBSCRIPT start_ARG start_ROW start_CELL 1 ≤ italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_j start_POSTSUBSCRIPT italic_d - italic_n - 1 end_POSTSUBSCRIPT ≤ italic_d end_CELL end_ROW start_ROW start_CELL italic_j start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ≠ italic_i end_CELL end_ROW end_ARG end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT … italic_y start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_d - italic_n - 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ≤ ( ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∑ start_POSTSUBSCRIPT start_ARG start_ROW start_CELL 1 ≤ italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_j start_POSTSUBSCRIPT italic_d - italic_n - 1 end_POSTSUBSCRIPT ≤ italic_d end_CELL end_ROW start_ROW start_CELL italic_j start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ≠ italic_i end_CELL end_ROW end_ARG end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT … italic_y start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_d - italic_n - 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) roman_max start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT

The double sum is then the coefficient counted dn𝑑𝑛d-nitalic_d - italic_n times, once for each choice of j𝑗jitalic_j.Unfortunately, truncation errors become an issue if there are roots of extreme sizes, so this method tends to work best when roots are all of a similar order of magnitude.

We focus now on recognising the coefficients as rationals. This method is standard in many undergraduate lecture notes, including [20]. Given a real number, x𝑥xitalic_x, the “best” rational approximation comes from the continued fraction expansion. In this case, x𝑥xitalic_x is a close approximation to a rational number, q𝑞qitalic_q. The continued fraction for q𝑞qitalic_q terminates, and so the continued fraction expansion for x𝑥xitalic_x will, at some point, have a very small error, corresponding to the end point of the continued fraction. If q=ab𝑞𝑎𝑏q=\frac{a}{b}italic_q = divide start_ARG italic_a end_ARG start_ARG italic_b end_ARG and xq=ε𝑥𝑞𝜀x-q=\varepsilonitalic_x - italic_q = italic_ε, the error at this step is approximately b2εsuperscript𝑏2𝜀b^{2}\varepsilonitalic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ε, so for any rational, if x𝑥xitalic_x is known with enough precision, the error will be below any given bound.

It is possible to factorise the resulting polynomial, and so compute Galois orbits. Our main use of this is to identify small orbits where lattice reduction techniques can be applied. As before, the correctness can be verified by computing symbolically the roots.

5. Example 1: Fermat Quartic

We work with the following affine model of the Fermat quartic

X:x4y34y=0:𝑋superscript𝑥4superscript𝑦34𝑦0X:x^{4}-y^{3}-4y=0italic_X : italic_x start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - italic_y start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 4 italic_y = 0

to ensure that a flex is in the necessary configuration.The 3333-torsion points on the Jacobian J𝐽Jitalic_J of X𝑋Xitalic_X are effective divisor D𝐷Ditalic_D, where 3D3𝐷3D3 italic_D is the zero divisor of hhitalic_h,

h=a1y2+a2xy+a3y+a4x3+a5x2+a6x+a7subscript𝑎1superscript𝑦2subscript𝑎2𝑥𝑦subscript𝑎3𝑦subscript𝑎4superscript𝑥3subscript𝑎5superscript𝑥2subscript𝑎6𝑥subscript𝑎7h=a_{1}y^{2}+a_{2}xy+a_{3}y+a_{4}x^{3}+a_{5}x^{2}+a_{6}x+a_{7}italic_h = italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_x italic_y + italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_y + italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT italic_x + italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT,

for some algebraic numbers a1,,a6subscript𝑎1subscript𝑎6a_{1},\ldots,a_{6}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT.

Following the method described in Section 2, we arrive at the following ten equations:

e1subscript𝑒1\displaystyle e_{1}italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT=4a22a6+a63+8a62+16a6a93a10,absent4superscriptsubscript𝑎22subscript𝑎6superscriptsubscript𝑎638superscriptsubscript𝑎6216subscript𝑎6superscriptsubscript𝑎93subscript𝑎10\displaystyle=4a_{2}^{2}a_{6}+a_{6}^{3}+8a_{6}^{2}+16a_{6}-a_{9}^{3}a_{10},= 4 italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT + italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + 8 italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 16 italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT - italic_a start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT ,
e2subscript𝑒2\displaystyle e_{2}italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT=8a1a2a6+4a22a5+3a5a62+16a5a6+16a53a8a92a10,absent8subscript𝑎1subscript𝑎2subscript𝑎64superscriptsubscript𝑎22subscript𝑎53subscript𝑎5superscriptsubscript𝑎6216subscript𝑎5subscript𝑎616subscript𝑎53subscript𝑎8superscriptsubscript𝑎92subscript𝑎10\displaystyle=8a_{1}a_{2}a_{6}+4a_{2}^{2}a_{5}+3a_{5}a_{6}^{2}+16a_{5}a_{6}+16%a_{5}-3a_{8}a_{9}^{2}a_{10},= 8 italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT + 4 italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 16 italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT + 16 italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT - 3 italic_a start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT ,
e3subscript𝑒3\displaystyle e_{3}italic_e start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT=4a12a6+8a1a2a5+4a22a4+3a4a62+16a4a6+16a4+3a52a6absent4superscriptsubscript𝑎12subscript𝑎68subscript𝑎1subscript𝑎2subscript𝑎54superscriptsubscript𝑎22subscript𝑎43subscript𝑎4superscriptsubscript𝑎6216subscript𝑎4subscript𝑎616subscript𝑎43superscriptsubscript𝑎52subscript𝑎6\displaystyle=4a_{1}^{2}a_{6}+8a_{1}a_{2}a_{5}+4a_{2}^{2}a_{4}+3a_{4}a_{6}^{2}%+16a_{4}a_{6}+16a_{4}+3a_{5}^{2}a_{6}= 4 italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT + 8 italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT + 4 italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 16 italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT + 16 italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT
+8a523a7a92a103a82a9a10,8superscriptsubscript𝑎523subscript𝑎7superscriptsubscript𝑎92subscript𝑎103superscriptsubscript𝑎82subscript𝑎9subscript𝑎10\displaystyle+8a_{5}^{2}-3a_{7}a_{9}^{2}a_{10}-3a_{8}^{2}a_{9}a_{10},+ 8 italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 3 italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT - 3 italic_a start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT ,
e4subscript𝑒4\displaystyle e_{4}italic_e start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT=4a12a5+8a1a2a4+4a22a3+3a3a62+16a3a6+16a3+6a4a5a6absent4superscriptsubscript𝑎12subscript𝑎58subscript𝑎1subscript𝑎2subscript𝑎44superscriptsubscript𝑎22subscript𝑎33subscript𝑎3superscriptsubscript𝑎6216subscript𝑎3subscript𝑎616subscript𝑎36subscript𝑎4subscript𝑎5subscript𝑎6\displaystyle=4a_{1}^{2}a_{5}+8a_{1}a_{2}a_{4}+4a_{2}^{2}a_{3}+3a_{3}a_{6}^{2}%+16a_{3}a_{6}+16a_{3}+6a_{4}a_{5}a_{6}= 4 italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT + 8 italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT + 4 italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 16 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT + 16 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + 6 italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT
+16a4a5+a536a7a8a9a10a83a103a92a10,16subscript𝑎4subscript𝑎5superscriptsubscript𝑎536subscript𝑎7subscript𝑎8subscript𝑎9subscript𝑎10superscriptsubscript𝑎83subscript𝑎103superscriptsubscript𝑎92subscript𝑎10\displaystyle+16a_{4}a_{5}+a_{5}^{3}-6a_{7}a_{8}a_{9}a_{10}-a_{8}^{3}a_{10}-3a%_{9}^{2}a_{10},+ 16 italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT + italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 6 italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT - italic_a start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT - 3 italic_a start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT ,
e5subscript𝑒5\displaystyle e_{5}italic_e start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT=4a12a4+8a1a2a3+a23+3a2a6+4a2+6a3a5a6+16a3a5+3a42a6+8a42+3a4a52absent4superscriptsubscript𝑎12subscript𝑎48subscript𝑎1subscript𝑎2subscript𝑎3superscriptsubscript𝑎233subscript𝑎2subscript𝑎64subscript𝑎26subscript𝑎3subscript𝑎5subscript𝑎616subscript𝑎3subscript𝑎53superscriptsubscript𝑎42subscript𝑎68superscriptsubscript𝑎423subscript𝑎4superscriptsubscript𝑎52\displaystyle=4a_{1}^{2}a_{4}+8a_{1}a_{2}a_{3}+a_{2}^{3}+3a_{2}a_{6}+4a_{2}+6a%_{3}a_{5}a_{6}+16a_{3}a_{5}+3a_{4}^{2}a_{6}+8a_{4}^{2}+3a_{4}a_{5}^{2}= 4 italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT + 8 italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + 3 italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT + 4 italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + 6 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT + 16 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT + 8 italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
3a72a9a13a7a82a106a8a9a10,3superscriptsubscript𝑎72subscript𝑎9subscript𝑎13subscript𝑎7superscriptsubscript𝑎82subscript𝑎106subscript𝑎8subscript𝑎9subscript𝑎10\displaystyle-3a_{7}^{2}a_{9}a_{1}-3a_{7}a_{8}^{2}a_{10}-6a_{8}a_{9}a_{10},- 3 italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 3 italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT - 6 italic_a start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT ,
e6subscript𝑒6\displaystyle e_{6}italic_e start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT=4a12a3+3a1a22+3a1a6+4a1+3a2a5+6a3a4a6+16a3a4+3a3a52+3a42a5absent4superscriptsubscript𝑎12subscript𝑎33subscript𝑎1superscriptsubscript𝑎223subscript𝑎1subscript𝑎64subscript𝑎13subscript𝑎2subscript𝑎56subscript𝑎3subscript𝑎4subscript𝑎616subscript𝑎3subscript𝑎43subscript𝑎3superscriptsubscript𝑎52limit-from3superscriptsubscript𝑎42subscript𝑎5\displaystyle=4a_{1}^{2}a_{3}+3a_{1}a_{2}^{2}+3a_{1}a_{6}+4a_{1}+3a_{2}a_{5}+6%a_{3}a_{4}a_{6}+16a_{3}a_{4}+3a_{3}a_{5}^{2}+3a_{4}^{2}a_{5}-= 4 italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT + 4 italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT + 6 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT + 16 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT -
3a72a8a106a7a9a103a82a10,3superscriptsubscript𝑎72subscript𝑎8subscript𝑎106subscript𝑎7subscript𝑎9subscript𝑎103superscriptsubscript𝑎82subscript𝑎10\displaystyle 3a_{7}^{2}a_{8}a_{10}-6a_{7}a_{9}a_{10}-3a_{8}^{2}a_{10},3 italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT - 6 italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT - 3 italic_a start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT ,
e7subscript𝑒7\displaystyle e_{7}italic_e start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT=3a12a2+3a1a5+3a2a4+3a32a6+8a32+6a3a4a5+a43a73a106a7a8a103a9a10,absent3superscriptsubscript𝑎12subscript𝑎23subscript𝑎1subscript𝑎53subscript𝑎2subscript𝑎43superscriptsubscript𝑎32subscript𝑎68superscriptsubscript𝑎326subscript𝑎3subscript𝑎4subscript𝑎5superscriptsubscript𝑎43superscriptsubscript𝑎73subscript𝑎106subscript𝑎7subscript𝑎8subscript𝑎103subscript𝑎9subscript𝑎10\displaystyle=3a_{1}^{2}a_{2}+3a_{1}a_{5}+3a_{2}a_{4}+3a_{3}^{2}a_{6}+8a_{3}^{%2}+6a_{3}a_{4}a_{5}+a_{4}^{3}-a_{7}^{3}a_{10}-6a_{7}a_{8}a_{10}-3a_{9}a_{10},= 3 italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT + 8 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 6 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT + italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT - 6 italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT - 3 italic_a start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT ,
e8subscript𝑒8\displaystyle e_{8}italic_e start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT=a13+3a1a4+3a2a3+3a32a5+3a3a423a72a103a8a10,absentsuperscriptsubscript𝑎133subscript𝑎1subscript𝑎43subscript𝑎2subscript𝑎33superscriptsubscript𝑎32subscript𝑎53subscript𝑎3superscriptsubscript𝑎423superscriptsubscript𝑎72subscript𝑎103subscript𝑎8subscript𝑎10\displaystyle=a_{1}^{3}+3a_{1}a_{4}+3a_{2}a_{3}+3a_{3}^{2}a_{5}+3a_{3}a_{4}^{2%}-3a_{7}^{2}a_{10}-3a_{8}a_{10},= italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + 3 italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 3 italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT - 3 italic_a start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT ,
e9subscript𝑒9\displaystyle e_{9}italic_e start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT=3a1a3+3a32a43a7a101,absent3subscript𝑎1subscript𝑎33superscriptsubscript𝑎32subscript𝑎43subscript𝑎7subscript𝑎101\displaystyle=3a_{1}a_{3}+3a_{3}^{2}a_{4}-3a_{7}a_{10}-1,= 3 italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT - 3 italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT - 1 ,
e10subscript𝑒10\displaystyle e_{10}italic_e start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT=a33a10.absentsuperscriptsubscript𝑎33subscript𝑎10\displaystyle=a_{3}^{3}-a_{10}.= italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT .

We also require an additional eleventh equation:

e11=a11r+1subscript𝑒11subscript𝑎11𝑟1e_{11}=a_{11}r+1italic_e start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT = italic_a start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT italic_r + 1

where r𝑟ritalic_r is the resultant of two polynomials, as previously described.

Using the method described in the previous sections, we compute two orbits of solutions. We state our orbits as follows: we give the minimal polynomial f𝑓fitalic_f of a1subscript𝑎1a_{1}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, and expressions s2,,s6subscript𝑠2subscript𝑠6s_{2},\ldots,s_{6}italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_s start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT for a2,,a6subscript𝑎2subscript𝑎6a_{2},\ldots,a_{6}italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT in terms of a1subscript𝑎1a_{1}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT.

f=x8(1/6)x41/432𝑓superscript𝑥816superscript𝑥41432\displaystyle f=x^{8}-(1/6)x^{4}-1/432italic_f = italic_x start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT - ( 1 / 6 ) italic_x start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - 1 / 432
a1=usubscript𝑎1𝑢\displaystyle a_{1}=uitalic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_u
a2=72u614u2subscript𝑎272superscript𝑢614superscript𝑢2\displaystyle a_{2}=72u^{6}-14u^{2}italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 72 italic_u start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT - 14 italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
a3=(1/864)(u736u3)subscript𝑎31864superscript𝑢736superscript𝑢3\displaystyle a_{3}=(1/864)(u^{7}-36u^{3})\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ %\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = ( 1 / 864 ) ( italic_u start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT - 36 italic_u start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT )
a4=0subscript𝑎40\displaystyle a_{4}=0italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT = 0
a5=0subscript𝑎50\displaystyle a_{5}=0italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT = 0
a6=0subscript𝑎60\displaystyle a_{6}=0italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT = 0
f=x88x7+28x656x5+52x4+16x380x2+64x44𝑓superscript𝑥88superscript𝑥728superscript𝑥656superscript𝑥552superscript𝑥416superscript𝑥380superscript𝑥264𝑥44\displaystyle f=x^{8}-8x^{7}+28x^{6}-56x^{5}+52x^{4}+16x^{3}-80x^{2}+64x-44italic_f = italic_x start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT - 8 italic_x start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT + 28 italic_x start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT - 56 italic_x start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT + 52 italic_x start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT + 16 italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 80 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 64 italic_x - 44
a1=usubscript𝑎1𝑢\displaystyle a_{1}=uitalic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_u
a2=2usubscript𝑎22𝑢\displaystyle a_{2}=-2uitalic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = - 2 italic_u
a3=(1/108)(u7+7u621u5+35u426u36u234u+46)subscript𝑎31108superscript𝑢77superscript𝑢621superscript𝑢535superscript𝑢426superscript𝑢36superscript𝑢234𝑢46\displaystyle a_{3}=(1/108)(-u^{7}+7u^{6}-21u^{5}+35u^{4}-26u^{3}-6u^{2}-34u+4%6)\ \ \ \ \ \ italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = ( 1 / 108 ) ( - italic_u start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT + 7 italic_u start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT - 21 italic_u start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT + 35 italic_u start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - 26 italic_u start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 6 italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 34 italic_u + 46 )
a4=(1/18)(u77u6+21u535u4+26u3+6u22u+26)subscript𝑎4118superscript𝑢77superscript𝑢621superscript𝑢535superscript𝑢426superscript𝑢36superscript𝑢22𝑢26\displaystyle a_{4}=(1/18)(u^{7}-7u^{6}+21u^{5}-35u^{4}+26u^{3}+6u^{2}-2u+26)italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT = ( 1 / 18 ) ( italic_u start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT - 7 italic_u start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT + 21 italic_u start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT - 35 italic_u start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT + 26 italic_u start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + 6 italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 italic_u + 26 )
a5=(1/9)(u7+7u621u5+35u426u36u2+20u26)subscript𝑎519superscript𝑢77superscript𝑢621superscript𝑢535superscript𝑢426superscript𝑢36superscript𝑢220𝑢26\displaystyle a_{5}=(1/9)(-u^{7}+7u^{6}-21u^{5}+35u^{4}-26u^{3}-6u^{2}+20u-26)italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT = ( 1 / 9 ) ( - italic_u start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT + 7 italic_u start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT - 21 italic_u start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT + 35 italic_u start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - 26 italic_u start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 6 italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 20 italic_u - 26 )
a6=(1/27)(2u714u6+42u570u4+52u3+12u240u+16)subscript𝑎61272superscript𝑢714superscript𝑢642superscript𝑢570superscript𝑢452superscript𝑢312superscript𝑢240𝑢16\displaystyle a_{6}=(1/27)(2u^{7}-14u^{6}+42u^{5}-70u^{4}+52u^{3}+12u^{2}-40u+%16)italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT = ( 1 / 27 ) ( 2 italic_u start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT - 14 italic_u start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT + 42 italic_u start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT - 70 italic_u start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT + 52 italic_u start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + 12 italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 40 italic_u + 16 )

Another orbit of 3333-torsion points can be obtained by working on the simpler scheme, where we assume that our cubics are of the form

h=xy+a1y+a2x3+a3x2+a4x+a5𝑥𝑦subscript𝑎1𝑦subscript𝑎2superscript𝑥3subscript𝑎3superscript𝑥2subscript𝑎4𝑥subscript𝑎5h=-xy+a_{1}y+a_{2}x^{3}+a_{3}x^{2}+a_{4}x+a_{5}italic_h = - italic_x italic_y + italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_y + italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_x + italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT,

and derive equations for this scheme by eliminating variables as in the previous case. This scheme has degree 8888 and we find that its points form a single orbit. To describe our orbit, we give a minimal polynomial f𝑓fitalic_f for a3subscript𝑎3a_{3}italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT and expression for the other coefficients in terms of a3subscript𝑎3a_{3}italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT.

f=x8(1/6)x41/432𝑓superscript𝑥816superscript𝑥41432\displaystyle f=x^{8}-(1/6)x^{4}-1/432italic_f = italic_x start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT - ( 1 / 6 ) italic_x start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - 1 / 432
a1=0subscript𝑎10\displaystyle a_{1}=0italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 0
a2=0subscript𝑎20\displaystyle a_{2}=0italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 0
a3=usubscript𝑎3𝑢\displaystyle a_{3}=uitalic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = italic_u
a4=0subscript𝑎40\displaystyle a_{4}=0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ %\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ %\ \ \ \ italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT = 0
a5=72u614u2subscript𝑎572superscript𝑢614superscript𝑢2\displaystyle a_{5}=72u^{6}-14u^{2}italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT = 72 italic_u start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT - 14 italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT

We verify that the three orbits above generate the entire subgroup J[3](/3)6𝐽delimited-[]3superscript36J[3]\cong\left(\mathbb{Z}/3\mathbb{Z}\right)^{6}italic_J [ 3 ] ≅ ( blackboard_Z / 3 blackboard_Z ) start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT as follows. The cubics above are all defined over the degree 32323232 number field K𝐾Kitalic_K given by

x328x31+28x3064x29+130x28216x27+120x26+420x251058x24+1032x23516x22128x21+3494x2015256x19+39888x1876812x17+119719x16158376x15+182304x14185360x13+168338x12137584x11+101508x1067596x9+40588x821912x7+10536x64440x5+1612x4488x3+112x216x+1superscript𝑥328superscript𝑥3128superscript𝑥3064superscript𝑥29130superscript𝑥28216superscript𝑥27120superscript𝑥26420superscript𝑥251058superscript𝑥241032superscript𝑥23516superscript𝑥22128superscript𝑥213494superscript𝑥2015256superscript𝑥1939888superscript𝑥1876812superscript𝑥17119719superscript𝑥16158376superscript𝑥15182304superscript𝑥14185360superscript𝑥13168338superscript𝑥12137584superscript𝑥11101508superscript𝑥1067596superscript𝑥940588superscript𝑥821912superscript𝑥710536superscript𝑥64440superscript𝑥51612superscript𝑥4488superscript𝑥3112superscript𝑥216𝑥1x^{32}-8x^{31}+28x^{30}-64x^{29}+130x^{28}-216x^{27}+120x^{26}+420x^{25}-1058x%^{24}+1032x^{23}-516x^{22}-128x^{21}+3494x^{20}-15256x^{19}+39888x^{18}-76812x%^{17}+119719x^{16}-158376x^{15}+182304x^{14}-185360x^{13}+168338x^{12}-137584x%^{11}+101508x^{10}-67596x^{9}+40588x^{8}-21912x^{7}+10536x^{6}-4440x^{5}+1612x%^{4}-488x^{3}+112x^{2}-16x+1italic_x start_POSTSUPERSCRIPT 32 end_POSTSUPERSCRIPT - 8 italic_x start_POSTSUPERSCRIPT 31 end_POSTSUPERSCRIPT + 28 italic_x start_POSTSUPERSCRIPT 30 end_POSTSUPERSCRIPT - 64 italic_x start_POSTSUPERSCRIPT 29 end_POSTSUPERSCRIPT + 130 italic_x start_POSTSUPERSCRIPT 28 end_POSTSUPERSCRIPT - 216 italic_x start_POSTSUPERSCRIPT 27 end_POSTSUPERSCRIPT + 120 italic_x start_POSTSUPERSCRIPT 26 end_POSTSUPERSCRIPT + 420 italic_x start_POSTSUPERSCRIPT 25 end_POSTSUPERSCRIPT - 1058 italic_x start_POSTSUPERSCRIPT 24 end_POSTSUPERSCRIPT + 1032 italic_x start_POSTSUPERSCRIPT 23 end_POSTSUPERSCRIPT - 516 italic_x start_POSTSUPERSCRIPT 22 end_POSTSUPERSCRIPT - 128 italic_x start_POSTSUPERSCRIPT 21 end_POSTSUPERSCRIPT + 3494 italic_x start_POSTSUPERSCRIPT 20 end_POSTSUPERSCRIPT - 15256 italic_x start_POSTSUPERSCRIPT 19 end_POSTSUPERSCRIPT + 39888 italic_x start_POSTSUPERSCRIPT 18 end_POSTSUPERSCRIPT - 76812 italic_x start_POSTSUPERSCRIPT 17 end_POSTSUPERSCRIPT + 119719 italic_x start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPT - 158376 italic_x start_POSTSUPERSCRIPT 15 end_POSTSUPERSCRIPT + 182304 italic_x start_POSTSUPERSCRIPT 14 end_POSTSUPERSCRIPT - 185360 italic_x start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT + 168338 italic_x start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT - 137584 italic_x start_POSTSUPERSCRIPT 11 end_POSTSUPERSCRIPT + 101508 italic_x start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT - 67596 italic_x start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT + 40588 italic_x start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT - 21912 italic_x start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT + 10536 italic_x start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT - 4440 italic_x start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT + 1612 italic_x start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - 488 italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + 112 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 16 italic_x + 1.

Let H𝐻Hitalic_H be the finite subgroup of J𝐽Jitalic_J corresponding to the points in above orbits. In the ring of integers of K𝐾Kitalic_K, 𝒪Ksubscript𝒪𝐾\mathcal{O}_{K}caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT, there is a prime ideal 𝔭𝔭\mathfrak{p}fraktur_p of norm 121121121121, and since 11111111 is a prime of good reduction for the curve, reduction modulo 𝔭𝔭\mathfrak{p}fraktur_p induces an injection on torsion [14]. The image of H𝐻Hitalic_H under the reduction map

r𝔭:J(K)J(𝔽𝔭):subscript𝑟𝔭𝐽𝐾𝐽subscript𝔽𝔭r_{\mathfrak{p}}:J\left(K\right)\longrightarrow J\left(\mathbb{F}_{\mathfrak{p%}}\right)italic_r start_POSTSUBSCRIPT fraktur_p end_POSTSUBSCRIPT : italic_J ( italic_K ) ⟶ italic_J ( blackboard_F start_POSTSUBSCRIPT fraktur_p end_POSTSUBSCRIPT )

is (/3)6superscript36\left(\mathbb{Z}/3\mathbb{Z}\right)^{6}( blackboard_Z / 3 blackboard_Z ) start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT, and hence H𝐻Hitalic_H is necessarily the entire 3333-torsion subgroup J[3]𝐽delimited-[]3J[3]italic_J [ 3 ].

6. Example 2: Klein Quartic

We work with the classical affine model of the Klein quartic

X:x3y+y3+x=0:𝑋superscript𝑥3𝑦superscript𝑦3𝑥0X:x^{3}y+y^{3}+x=0italic_X : italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_y + italic_y start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_x = 0.

and compute a1,,a6subscript𝑎1subscript𝑎6a_{1},\ldots,a_{6}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT such that the cubic defined by

h=y2+a1xy+a2y+a3x3+a4x2+a5x+a6superscript𝑦2subscript𝑎1𝑥𝑦subscript𝑎2𝑦subscript𝑎3superscript𝑥3subscript𝑎4superscript𝑥2subscript𝑎5𝑥subscript𝑎6h=-y^{2}+a_{1}xy+a_{2}y+a_{3}x^{3}+a_{4}x^{2}+a_{5}x+a_{6}italic_h = - italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_x italic_y + italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_y + italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT italic_x + italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT

gives a 3333-torsion element. Then proceeding as before, we compute a system of 11111111 equations whose solutions correspond to our coefficients:

e1subscript𝑒1\displaystyle e_{1}italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT=a63+a7a103absentsuperscriptsubscript𝑎63subscript𝑎7superscriptsubscript𝑎103\displaystyle=-a_{6}^{3}+a_{7}a_{10}^{3}= - italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT
e2subscript𝑒2\displaystyle e_{2}italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT=a23+3a2a63a5a62+3a7a9a102absentsuperscriptsubscript𝑎233subscript𝑎2subscript𝑎63subscript𝑎5superscriptsubscript𝑎623subscript𝑎7subscript𝑎9superscriptsubscript𝑎102\displaystyle=a_{2}^{3}+3a_{2}a_{6}-3a_{5}a_{6}^{2}+3a_{7}a_{9}a_{10}^{2}= italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + 3 italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT - 3 italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
e3subscript𝑒3\displaystyle e_{3}italic_e start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT=3a1a22+3a1a6+3a2a53a4a623a52a6+3a7a8a102+3a7a92a10+1absent3subscript𝑎1superscriptsubscript𝑎223subscript𝑎1subscript𝑎63subscript𝑎2subscript𝑎53subscript𝑎4superscriptsubscript𝑎623superscriptsubscript𝑎52subscript𝑎63subscript𝑎7subscript𝑎8superscriptsubscript𝑎1023subscript𝑎7superscriptsubscript𝑎92subscript𝑎101\displaystyle=3a_{1}a_{2}^{2}+3a_{1}a_{6}+3a_{2}a_{5}-3a_{4}a_{6}^{2}-3a_{5}^{%2}a_{6}+3a_{7}a_{8}a_{10}^{2}+3a_{7}a_{9}^{2}a_{10}+1= 3 italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT - 3 italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 3 italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT + 1
e4subscript𝑒4\displaystyle e_{4}italic_e start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT=3a12a2+3a1a5a22a6+3a2a43a3a626a4a5a6a532a62+6a7a8a9a10absent3superscriptsubscript𝑎12subscript𝑎23subscript𝑎1subscript𝑎5superscriptsubscript𝑎22subscript𝑎63subscript𝑎2subscript𝑎43subscript𝑎3superscriptsubscript𝑎626subscript𝑎4subscript𝑎5subscript𝑎6superscriptsubscript𝑎532superscriptsubscript𝑎626subscript𝑎7subscript𝑎8subscript𝑎9subscript𝑎10\displaystyle=3a_{1}^{2}a_{2}+3a_{1}a_{5}-a_{2}^{2}a_{6}+3a_{2}a_{4}-3a_{3}a_{%6}^{2}-6a_{4}a_{5}a_{6}-a_{5}^{3}-2a_{6}^{2}+6a_{7}a_{8}a_{9}a_{10}= 3 italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT - italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT - 3 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 6 italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT - italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 2 italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 6 italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT
+a7a93+3a7a102subscript𝑎7superscriptsubscript𝑎933subscript𝑎7superscriptsubscript𝑎102\displaystyle+a_{7}a_{9}^{3}+3a_{7}a_{10}^{2}+ italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + 3 italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
e5subscript𝑒5\displaystyle e_{5}italic_e start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT=a132a1a2a6+3a1a4a22a5+3a2a3+a26a3a5a63a42a63a4a524a5a6absentsuperscriptsubscript𝑎132subscript𝑎1subscript𝑎2subscript𝑎63subscript𝑎1subscript𝑎4superscriptsubscript𝑎22subscript𝑎53subscript𝑎2subscript𝑎3subscript𝑎26subscript𝑎3subscript𝑎5subscript𝑎63superscriptsubscript𝑎42subscript𝑎63subscript𝑎4superscriptsubscript𝑎524subscript𝑎5subscript𝑎6\displaystyle=a_{1}^{3}-2a_{1}a_{2}a_{6}+3a_{1}a_{4}-a_{2}^{2}a_{5}+3a_{2}a_{3%}+a_{2}-6a_{3}a_{5}a_{6}-3a_{4}^{2}a_{6}-3a_{4}a_{5}^{2}-4a_{5}a_{6}= italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 2 italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT - italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - 6 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT - 3 italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT - 3 italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 4 italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT
+3a7a82a10+3a7a8a92+6a7a9a103subscript𝑎7superscriptsubscript𝑎82subscript𝑎103subscript𝑎7subscript𝑎8superscriptsubscript𝑎926subscript𝑎7subscript𝑎9subscript𝑎10\displaystyle+3a_{7}a_{8}^{2}a_{10}+3a_{7}a_{8}a_{9}^{2}+6a_{7}a_{9}a_{10}+ 3 italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 6 italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT
e6subscript𝑒6\displaystyle e_{6}italic_e start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT=a12a62a1a2a5+3a1a3+a1a22a46a3a4a63a3a523a42a54a4a62a52+absentsuperscriptsubscript𝑎12subscript𝑎62subscript𝑎1subscript𝑎2subscript𝑎53subscript𝑎1subscript𝑎3subscript𝑎1superscriptsubscript𝑎22subscript𝑎46subscript𝑎3subscript𝑎4subscript𝑎63subscript𝑎3superscriptsubscript𝑎523superscriptsubscript𝑎42subscript𝑎54subscript𝑎4subscript𝑎6limit-from2superscriptsubscript𝑎52\displaystyle=-a_{1}^{2}a_{6}-2a_{1}a_{2}a_{5}+3a_{1}a_{3}+a_{1}-a_{2}^{2}a_{4%}-6a_{3}a_{4}a_{6}-3a_{3}a_{5}^{2}-3a_{4}^{2}a_{5}-4a_{4}a_{6}-2a_{5}^{2}+= - italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT - 2 italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT - 6 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT - 3 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 3 italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT - 4 italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT - 2 italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT +
3a7a82a9+6a7a8a10+3a7a923subscript𝑎7superscriptsubscript𝑎82subscript𝑎96subscript𝑎7subscript𝑎8subscript𝑎103subscript𝑎7superscriptsubscript𝑎92\displaystyle 3a_{7}a_{8}^{2}a_{9}+6a_{7}a_{8}a_{10}+3a_{7}a_{9}^{2}3 italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT + 6 italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
e7subscript𝑒7\displaystyle e_{7}italic_e start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT=a12a52a1a2a4a22a33a32a66a3a4a54a3a6a434a4a5a6+a7a83absentsuperscriptsubscript𝑎12subscript𝑎52subscript𝑎1subscript𝑎2subscript𝑎4superscriptsubscript𝑎22subscript𝑎33superscriptsubscript𝑎32subscript𝑎66subscript𝑎3subscript𝑎4subscript𝑎54subscript𝑎3subscript𝑎6superscriptsubscript𝑎434subscript𝑎4subscript𝑎5subscript𝑎6subscript𝑎7superscriptsubscript𝑎83\displaystyle=-a_{1}^{2}a_{5}-2a_{1}a_{2}a_{4}-a_{2}^{2}a_{3}-3a_{3}^{2}a_{6}-%6a_{3}a_{4}a_{5}-4a_{3}a_{6}-a_{4}^{3}-4a_{4}a_{5}-a_{6}+a_{7}a_{8}^{3}= - italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT - 2 italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT - italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT - 3 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT - 6 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT - 4 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT - italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 4 italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT - italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT + italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT
+6a7a8a9+3a7a106subscript𝑎7subscript𝑎8subscript𝑎93subscript𝑎7subscript𝑎10\displaystyle+6a_{7}a_{8}a_{9}+3a_{7}a_{10}+ 6 italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT
e8subscript𝑒8\displaystyle e_{8}italic_e start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT=a12a42a1a2a33a32a53a3a424a3a52a42a5+3a7a82+3a7a9absentsuperscriptsubscript𝑎12subscript𝑎42subscript𝑎1subscript𝑎2subscript𝑎33superscriptsubscript𝑎32subscript𝑎53subscript𝑎3superscriptsubscript𝑎424subscript𝑎3subscript𝑎52superscriptsubscript𝑎42subscript𝑎53subscript𝑎7superscriptsubscript𝑎823subscript𝑎7subscript𝑎9\displaystyle=-a_{1}^{2}a_{4}-2a_{1}a_{2}a_{3}-3a_{3}^{2}a_{5}-3a_{3}a_{4}^{2}%-4a_{3}a_{5}-2a_{4}^{2}-a_{5}+3a_{7}a_{8}^{2}+3a_{7}a_{9}= - italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT - 2 italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT - 3 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT - 3 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 4 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT - 2 italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT
e9subscript𝑒9\displaystyle e_{9}italic_e start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT=a12a33a32a44a3a4a4+3a7a8absentsuperscriptsubscript𝑎12subscript𝑎33superscriptsubscript𝑎32subscript𝑎44subscript𝑎3subscript𝑎4subscript𝑎43subscript𝑎7subscript𝑎8\displaystyle=-a_{1}^{2}a_{3}-3a_{3}^{2}a_{4}-4a_{3}a_{4}-a_{4}+3a_{7}a_{8}= - italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT - 3 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT - 4 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT - italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT + 3 italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT
e10subscript𝑒10\displaystyle e_{10}italic_e start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT=a332a32a3+a7absentsuperscriptsubscript𝑎332superscriptsubscript𝑎32subscript𝑎3subscript𝑎7\displaystyle=-a_{3}^{3}-2a_{3}^{2}-a_{3}+a_{7}= - italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 2 italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT

and e11subscript𝑒11e_{11}italic_e start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT is of the same form as before.

We computed two orbits of 3limit-from33-3 -torsion points, which were sufficient to generate the entire group. Below, we give the minimal polynomial of a1subscript𝑎1a_{1}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and expressions for a2,,a6subscript𝑎2subscript𝑎6a_{2},\ldots,a_{6}italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT in terms of a1subscript𝑎1a_{1}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT.

f=x248x23+26x2241x2156x20+574x191155x18694x17+5853x168258x15𝑓superscript𝑥248superscript𝑥2326superscript𝑥2241superscript𝑥2156superscript𝑥20574superscript𝑥191155superscript𝑥18694superscript𝑥175853superscript𝑥168258superscript𝑥15\displaystyle f=x^{24}-8x^{23}+26x^{22}-41x^{21}-56x^{20}+574x^{19}-1155x^{18}%-694x^{17}+5853x^{16}-8258x^{15}italic_f = italic_x start_POSTSUPERSCRIPT 24 end_POSTSUPERSCRIPT - 8 italic_x start_POSTSUPERSCRIPT 23 end_POSTSUPERSCRIPT + 26 italic_x start_POSTSUPERSCRIPT 22 end_POSTSUPERSCRIPT - 41 italic_x start_POSTSUPERSCRIPT 21 end_POSTSUPERSCRIPT - 56 italic_x start_POSTSUPERSCRIPT 20 end_POSTSUPERSCRIPT + 574 italic_x start_POSTSUPERSCRIPT 19 end_POSTSUPERSCRIPT - 1155 italic_x start_POSTSUPERSCRIPT 18 end_POSTSUPERSCRIPT - 694 italic_x start_POSTSUPERSCRIPT 17 end_POSTSUPERSCRIPT + 5853 italic_x start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPT - 8258 italic_x start_POSTSUPERSCRIPT 15 end_POSTSUPERSCRIPT
+3219x14+10360x1350995x12+100695x11+2805x10292969x9+317510x83219superscript𝑥1410360superscript𝑥1350995superscript𝑥12100695superscript𝑥112805superscript𝑥10292969superscript𝑥9317510superscript𝑥8\displaystyle+3219x^{14}+10360x^{13}-50995x^{12}+100695x^{11}+2805x^{10}-29296%9x^{9}+317510x^{8}+ 3219 italic_x start_POSTSUPERSCRIPT 14 end_POSTSUPERSCRIPT + 10360 italic_x start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT - 50995 italic_x start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT + 100695 italic_x start_POSTSUPERSCRIPT 11 end_POSTSUPERSCRIPT + 2805 italic_x start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT - 292969 italic_x start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT + 317510 italic_x start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT
+129778x7412412x6+184030x5+86352x4109108x3+44589x210096x+1009129778superscript𝑥7412412superscript𝑥6184030superscript𝑥586352superscript𝑥4109108superscript𝑥344589superscript𝑥210096𝑥1009\displaystyle+129778x^{7}-412412x^{6}+184030x^{5}+86352x^{4}-109108x^{3}+44589%x^{2}-10096x+1009+ 129778 italic_x start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT - 412412 italic_x start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT + 184030 italic_x start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT + 86352 italic_x start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - 109108 italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + 44589 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 10096 italic_x + 1009
a1=usubscript𝑎1𝑢\displaystyle a_{1}=uitalic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_u
a2=(435951209630782598061899622055031741081043u23+3571381032078647937662964093936968549559816u22\displaystyle a_{2}=(-435951209630782598061899622055031741081043u^{23}+3571381%032078647937662964093936968549559816u^{22}italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = ( - 435951209630782598061899622055031741081043 italic_u start_POSTSUPERSCRIPT 23 end_POSTSUPERSCRIPT + 3571381032078647937662964093936968549559816 italic_u start_POSTSUPERSCRIPT 22 end_POSTSUPERSCRIPT
11675186943937772871765833623109150981124795u21+17994413036853208659852788815336903508075466u20+11675186943937772871765833623109150981124795superscript𝑢21limit-from17994413036853208659852788815336903508075466superscript𝑢20\displaystyle-11675186943937772871765833623109150981124795u^{21}+1799441303685%3208659852788815336903508075466u^{20}+- 11675186943937772871765833623109150981124795 italic_u start_POSTSUPERSCRIPT 21 end_POSTSUPERSCRIPT + 17994413036853208659852788815336903508075466 italic_u start_POSTSUPERSCRIPT 20 end_POSTSUPERSCRIPT +
25803105134858601596505401339502379186400075u19259160583974555706565515262686720818548120485u1825803105134858601596505401339502379186400075superscript𝑢19259160583974555706565515262686720818548120485superscript𝑢18\displaystyle 25803105134858601596505401339502379186400075u^{19}-2591605839745%55706565515262686720818548120485u^{18}25803105134858601596505401339502379186400075 italic_u start_POSTSUPERSCRIPT 19 end_POSTSUPERSCRIPT - 259160583974555706565515262686720818548120485 italic_u start_POSTSUPERSCRIPT 18 end_POSTSUPERSCRIPT
+523778969657186662425923810713338161891078304u17+348072907551789435809107520565847036765988817u16523778969657186662425923810713338161891078304superscript𝑢17348072907551789435809107520565847036765988817superscript𝑢16\displaystyle+523778969657186662425923810713338161891078304u^{17}+348072907551%789435809107520565847036765988817u^{16}+ 523778969657186662425923810713338161891078304 italic_u start_POSTSUPERSCRIPT 17 end_POSTSUPERSCRIPT + 348072907551789435809107520565847036765988817 italic_u start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPT
2730404500005887076839604167477670574091542272u15+3595482593408112395894126217940978060778347035u142730404500005887076839604167477670574091542272superscript𝑢153595482593408112395894126217940978060778347035superscript𝑢14\displaystyle-2730404500005887076839604167477670574091542272u^{15}+35954825934%08112395894126217940978060778347035u^{14}- 2730404500005887076839604167477670574091542272 italic_u start_POSTSUPERSCRIPT 15 end_POSTSUPERSCRIPT + 3595482593408112395894126217940978060778347035 italic_u start_POSTSUPERSCRIPT 14 end_POSTSUPERSCRIPT
986188455465036555220598727240139337437891836u134850558767258071782161957415352370889563689816u12986188455465036555220598727240139337437891836superscript𝑢134850558767258071782161957415352370889563689816superscript𝑢12\displaystyle-986188455465036555220598727240139337437891836u^{13}-485055876725%8071782161957415352370889563689816u^{12}- 986188455465036555220598727240139337437891836 italic_u start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT - 4850558767258071782161957415352370889563689816 italic_u start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT
+22701694079780912714753691113809320814697165394u1145165990971324005401367325287504349654210544902u1022701694079780912714753691113809320814697165394superscript𝑢1145165990971324005401367325287504349654210544902superscript𝑢10\displaystyle+22701694079780912714753691113809320814697165394u^{11}-4516599097%1324005401367325287504349654210544902u^{10}+ 22701694079780912714753691113809320814697165394 italic_u start_POSTSUPERSCRIPT 11 end_POSTSUPERSCRIPT - 45165990971324005401367325287504349654210544902 italic_u start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT
4350970427615079664592122069492592494777616887u9+139851370684018908240276639991512957958324069749u84350970427615079664592122069492592494777616887superscript𝑢9limit-from139851370684018908240276639991512957958324069749superscript𝑢8\displaystyle-4350970427615079664592122069492592494777616887u^{9}+139851370684%018908240276639991512957958324069749u^{8}-- 4350970427615079664592122069492592494777616887 italic_u start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT + 139851370684018908240276639991512957958324069749 italic_u start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT -
136739143426559138092316479794678325514475238440u785366291984978396809280557614820969636726185049u6+136739143426559138092316479794678325514475238440superscript𝑢7limit-from85366291984978396809280557614820969636726185049superscript𝑢6\displaystyle 136739143426559138092316479794678325514475238440u^{7}-8536629198%4978396809280557614820969636726185049u^{6}+136739143426559138092316479794678325514475238440 italic_u start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT - 85366291984978396809280557614820969636726185049 italic_u start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT +
189680256334508145759051666398055695840530757217u555261392345239867305623968203706680140884876328u4189680256334508145759051666398055695840530757217superscript𝑢5limit-from55261392345239867305623968203706680140884876328superscript𝑢4\displaystyle 189680256334508145759051666398055695840530757217u^{5}-5526139234%5239867305623968203706680140884876328u^{4}-189680256334508145759051666398055695840530757217 italic_u start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT - 55261392345239867305623968203706680140884876328 italic_u start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT -
55075392536259947627007300122250664442993817996u3+43290107969201394199156213749516811789886641122u255075392536259947627007300122250664442993817996superscript𝑢3limit-from43290107969201394199156213749516811789886641122superscript𝑢2\displaystyle 55075392536259947627007300122250664442993817996u^{3}+43290107969%201394199156213749516811789886641122u^{2}-55075392536259947627007300122250664442993817996 italic_u start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + 43290107969201394199156213749516811789886641122 italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT -
11948407690343313517365897079962014827888771595u+limit-from11948407690343313517365897079962014827888771595𝑢\displaystyle 11948407690343313517365897079962014827888771595u+11948407690343313517365897079962014827888771595 italic_u +
1400989280495029579140060998705568762225219478)/575184926745743538665843780338528325370639313\displaystyle 1400989280495029579140060998705568762225219478)/5751849267457435%386658437803385283253706393131400989280495029579140060998705568762225219478 ) / 575184926745743538665843780338528325370639313
a3=(10851359474294552058287984884461501020590057u2381719038025536173937233179495793012162624266u22\displaystyle a_{3}=(10851359474294552058287984884461501020590057u^{23}-817190%38025536173937233179495793012162624266u^{22}italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = ( 10851359474294552058287984884461501020590057 italic_u start_POSTSUPERSCRIPT 23 end_POSTSUPERSCRIPT - 81719038025536173937233179495793012162624266 italic_u start_POSTSUPERSCRIPT 22 end_POSTSUPERSCRIPT
+245377679459405721202298359482579825396667854u21338782720559068097616753930864099098357758880u20245377679459405721202298359482579825396667854superscript𝑢21limit-from338782720559068097616753930864099098357758880superscript𝑢20\displaystyle+245377679459405721202298359482579825396667854u^{21}-338782720559%068097616753930864099098357758880u^{20}-+ 245377679459405721202298359482579825396667854 italic_u start_POSTSUPERSCRIPT 21 end_POSTSUPERSCRIPT - 338782720559068097616753930864099098357758880 italic_u start_POSTSUPERSCRIPT 20 end_POSTSUPERSCRIPT -
746493635324089924940708652642792473871209878u19+5856500627256709818900701760050361512308331835u18746493635324089924940708652642792473871209878superscript𝑢195856500627256709818900701760050361512308331835superscript𝑢18\displaystyle 746493635324089924940708652642792473871209878u^{19}+585650062725%6709818900701760050361512308331835u^{18}746493635324089924940708652642792473871209878 italic_u start_POSTSUPERSCRIPT 19 end_POSTSUPERSCRIPT + 5856500627256709818900701760050361512308331835 italic_u start_POSTSUPERSCRIPT 18 end_POSTSUPERSCRIPT
9899483813483103730374585951499766067746283829u1711589240558418811901896070360550192501326383175u169899483813483103730374585951499766067746283829superscript𝑢1711589240558418811901896070360550192501326383175superscript𝑢16\displaystyle-9899483813483103730374585951499766067746283829u^{17}-11589240558%418811901896070360550192501326383175u^{16}- 9899483813483103730374585951499766067746283829 italic_u start_POSTSUPERSCRIPT 17 end_POSTSUPERSCRIPT - 11589240558418811901896070360550192501326383175 italic_u start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPT
+57667369707061295712529533694255114907889339378u1564269931342460213537224212870561356550003984762u1457667369707061295712529533694255114907889339378superscript𝑢1564269931342460213537224212870561356550003984762superscript𝑢14\displaystyle+57667369707061295712529533694255114907889339378u^{15}-6426993134%2460213537224212870561356550003984762u^{14}+ 57667369707061295712529533694255114907889339378 italic_u start_POSTSUPERSCRIPT 15 end_POSTSUPERSCRIPT - 64269931342460213537224212870561356550003984762 italic_u start_POSTSUPERSCRIPT 14 end_POSTSUPERSCRIPT
+8189889324881641411485597554710538269916951576u13+112646480494335948383678069924433782070221157687u128189889324881641411485597554710538269916951576superscript𝑢13112646480494335948383678069924433782070221157687superscript𝑢12\displaystyle+8189889324881641411485597554710538269916951576u^{13}+11264648049%4335948383678069924433782070221157687u^{12}+ 8189889324881641411485597554710538269916951576 italic_u start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT + 112646480494335948383678069924433782070221157687 italic_u start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT
497333746503947924082424699830398428404637513659u11+869602607053148613894334678322697433477379785842u10497333746503947924082424699830398428404637513659superscript𝑢11869602607053148613894334678322697433477379785842superscript𝑢10\displaystyle-497333746503947924082424699830398428404637513659u^{11}+869602607%053148613894334678322697433477379785842u^{10}- 497333746503947924082424699830398428404637513659 italic_u start_POSTSUPERSCRIPT 11 end_POSTSUPERSCRIPT + 869602607053148613894334678322697433477379785842 italic_u start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT
+389140661553860741469400461736540942505257041012u92948632711463800976952466586090926921102095439915u8389140661553860741469400461736540942505257041012superscript𝑢92948632711463800976952466586090926921102095439915superscript𝑢8\displaystyle+389140661553860741469400461736540942505257041012u^{9}-2948632711%463800976952466586090926921102095439915u^{8}+ 389140661553860741469400461736540942505257041012 italic_u start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT - 2948632711463800976952466586090926921102095439915 italic_u start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT
+2139040783064833689431294629146584522275096629872u7+2278848086018478613013512248350540208510091260783u62139040783064833689431294629146584522275096629872superscript𝑢72278848086018478613013512248350540208510091260783superscript𝑢6\displaystyle+2139040783064833689431294629146584522275096629872u^{7}+227884808%6018478613013512248350540208510091260783u^{6}+ 2139040783064833689431294629146584522275096629872 italic_u start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT + 2278848086018478613013512248350540208510091260783 italic_u start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT
3359224506585421618658709914024059975644960846209u5+395760548753092675180756922943039130586047866540u43359224506585421618658709914024059975644960846209superscript𝑢5395760548753092675180756922943039130586047866540superscript𝑢4\displaystyle-3359224506585421618658709914024059975644960846209u^{5}+395760548%753092675180756922943039130586047866540u^{4}- 3359224506585421618658709914024059975644960846209 italic_u start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT + 395760548753092675180756922943039130586047866540 italic_u start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT
+1041608781211584080916917919674853216647175438909u3540164732350553628603894902518822208600407608198u21041608781211584080916917919674853216647175438909superscript𝑢3540164732350553628603894902518822208600407608198superscript𝑢2\displaystyle+1041608781211584080916917919674853216647175438909u^{3}-540164732%350553628603894902518822208600407608198u^{2}+ 1041608781211584080916917919674853216647175438909 italic_u start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 540164732350553628603894902518822208600407608198 italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
+168611615779118510909413482566618928175609369735ulimit-from168611615779118510909413482566618928175609369735𝑢\displaystyle+168611615779118510909413482566618928175609369735u-+ 168611615779118510909413482566618928175609369735 italic_u -
98416959483292631610131442805239714659254664127)/77649965110675377719888910345701323925036307255\displaystyle 98416959483292631610131442805239714659254664127)/776499651106753%7771988891034570132392503630725598416959483292631610131442805239714659254664127 ) / 77649965110675377719888910345701323925036307255
a4=(4280989444220521273355279146893946493323224u23+24639479058711600676151318566019778263175555u22\displaystyle a_{4}=(-4280989444220521273355279146893946493323224u^{23}+246394%79058711600676151318566019778263175555u^{22}italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT = ( - 4280989444220521273355279146893946493323224 italic_u start_POSTSUPERSCRIPT 23 end_POSTSUPERSCRIPT + 24639479058711600676151318566019778263175555 italic_u start_POSTSUPERSCRIPT 22 end_POSTSUPERSCRIPT
50485258220276792422340072320594133380745252u21+30923585452384024083555134385652914240717380u2050485258220276792422340072320594133380745252superscript𝑢2130923585452384024083555134385652914240717380superscript𝑢20\displaystyle-50485258220276792422340072320594133380745252u^{21}+3092358545238%4024083555134385652914240717380u^{20}- 50485258220276792422340072320594133380745252 italic_u start_POSTSUPERSCRIPT 21 end_POSTSUPERSCRIPT + 30923585452384024083555134385652914240717380 italic_u start_POSTSUPERSCRIPT 20 end_POSTSUPERSCRIPT
+369423365960467057878944005592714249638226513u191650968634680527086639304585737871266965856330u18369423365960467057878944005592714249638226513superscript𝑢191650968634680527086639304585737871266965856330superscript𝑢18\displaystyle+369423365960467057878944005592714249638226513u^{19}-165096863468%0527086639304585737871266965856330u^{18}+ 369423365960467057878944005592714249638226513 italic_u start_POSTSUPERSCRIPT 19 end_POSTSUPERSCRIPT - 1650968634680527086639304585737871266965856330 italic_u start_POSTSUPERSCRIPT 18 end_POSTSUPERSCRIPT
+738501888882662895281074066428614372043526721u17+6719237951509837495058602443361228608156262712u16738501888882662895281074066428614372043526721superscript𝑢176719237951509837495058602443361228608156262712superscript𝑢16\displaystyle+738501888882662895281074066428614372043526721u^{17}+671923795150%9837495058602443361228608156262712u^{16}+ 738501888882662895281074066428614372043526721 italic_u start_POSTSUPERSCRIPT 17 end_POSTSUPERSCRIPT + 6719237951509837495058602443361228608156262712 italic_u start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPT
10548957760828800311184917125527530990893007084u15+2168125216720129517132739031863051638507552569u1410548957760828800311184917125527530990893007084superscript𝑢152168125216720129517132739031863051638507552569superscript𝑢14\displaystyle-10548957760828800311184917125527530990893007084u^{15}+2168125216%720129517132739031863051638507552569u^{14}- 10548957760828800311184917125527530990893007084 italic_u start_POSTSUPERSCRIPT 15 end_POSTSUPERSCRIPT + 2168125216720129517132739031863051638507552569 italic_u start_POSTSUPERSCRIPT 14 end_POSTSUPERSCRIPT
+4026507937684564168610386651329663488170878244u1333158336375748733632461180590108006514265100451u124026507937684564168610386651329663488170878244superscript𝑢1333158336375748733632461180590108006514265100451superscript𝑢12\displaystyle+4026507937684564168610386651329663488170878244u^{13}-33158336375%748733632461180590108006514265100451u^{12}+ 4026507937684564168610386651329663488170878244 italic_u start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT - 33158336375748733632461180590108006514265100451 italic_u start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT
+133637696782723810449041484760347867993674512833u1190737555033670455033695709188896317975260562829u10133637696782723810449041484760347867993674512833superscript𝑢1190737555033670455033695709188896317975260562829superscript𝑢10\displaystyle+133637696782723810449041484760347867993674512833u^{11}-907375550%33670455033695709188896317975260562829u^{10}+ 133637696782723810449041484760347867993674512833 italic_u start_POSTSUPERSCRIPT 11 end_POSTSUPERSCRIPT - 90737555033670455033695709188896317975260562829 italic_u start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT
377688896859637892313328913643364132917720792735u9+491901588692832567689280486837874920357228701469u8377688896859637892313328913643364132917720792735superscript𝑢9491901588692832567689280486837874920357228701469superscript𝑢8\displaystyle-377688896859637892313328913643364132917720792735u^{9}+4919015886%92832567689280486837874920357228701469u^{8}- 377688896859637892313328913643364132917720792735 italic_u start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT + 491901588692832567689280486837874920357228701469 italic_u start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT
+297976029762786485325839530032278310021054468699u7498848643468620329349944578305346796225619927233u6297976029762786485325839530032278310021054468699superscript𝑢7498848643468620329349944578305346796225619927233superscript𝑢6\displaystyle+297976029762786485325839530032278310021054468699u^{7}-4988486434%68620329349944578305346796225619927233u^{6}+ 297976029762786485325839530032278310021054468699 italic_u start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT - 498848643468620329349944578305346796225619927233 italic_u start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT
19886042473720152793089204264539879829727399001u5+20975357803476830147175528026135198155461717127u419886042473720152793089204264539879829727399001superscript𝑢520975357803476830147175528026135198155461717127superscript𝑢4\displaystyle-19886042473720152793089204264539879829727399001u^{5}+20975357803%476830147175528026135198155461717127u^{4}- 19886042473720152793089204264539879829727399001 italic_u start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT + 20975357803476830147175528026135198155461717127 italic_u start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT
+44781829656325113113779834055057941350014782838u3+112205234274266884973910176728320702195587456234u244781829656325113113779834055057941350014782838superscript𝑢3112205234274266884973910176728320702195587456234superscript𝑢2\displaystyle+44781829656325113113779834055057941350014782838u^{3}+11220523427%4266884973910176728320702195587456234u^{2}+ 44781829656325113113779834055057941350014782838 italic_u start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + 112205234274266884973910176728320702195587456234 italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
57466769816946581245715260299684504185894775922ulimit-from57466769816946581245715260299684504185894775922𝑢\displaystyle-57466769816946581245715260299684504185894775922u-- 57466769816946581245715260299684504185894775922 italic_u -
4951133832496881111155518448009087122653328237)/25883321703558459239962970115233774641678769085\displaystyle 4951133832496881111155518448009087122653328237)/2588332170355845%92399629701152337746416787690854951133832496881111155518448009087122653328237 ) / 25883321703558459239962970115233774641678769085
a5=(64672624496485254887769674249475137418437317u23485678253783067121329174115525745954174622332u22\displaystyle a_{5}=(64672624496485254887769674249475137418437317u^{23}-485678%253783067121329174115525745954174622332u^{22}italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT = ( 64672624496485254887769674249475137418437317 italic_u start_POSTSUPERSCRIPT 23 end_POSTSUPERSCRIPT - 485678253783067121329174115525745954174622332 italic_u start_POSTSUPERSCRIPT 22 end_POSTSUPERSCRIPT
+1446858105729538443117884304295047358803487578u211964414088516181338426368967459248822043307617u201446858105729538443117884304295047358803487578superscript𝑢211964414088516181338426368967459248822043307617superscript𝑢20\displaystyle+1446858105729538443117884304295047358803487578u^{21}-19644140885%16181338426368967459248822043307617u^{20}+ 1446858105729538443117884304295047358803487578 italic_u start_POSTSUPERSCRIPT 21 end_POSTSUPERSCRIPT - 1964414088516181338426368967459248822043307617 italic_u start_POSTSUPERSCRIPT 20 end_POSTSUPERSCRIPT
4532326603932548675323126511769456286250895459u19+34857285117255339129843631836731781005761922392u184532326603932548675323126511769456286250895459superscript𝑢1934857285117255339129843631836731781005761922392superscript𝑢18\displaystyle-4532326603932548675323126511769456286250895459u^{19}+34857285117%255339129843631836731781005761922392u^{18}- 4532326603932548675323126511769456286250895459 italic_u start_POSTSUPERSCRIPT 19 end_POSTSUPERSCRIPT + 34857285117255339129843631836731781005761922392 italic_u start_POSTSUPERSCRIPT 18 end_POSTSUPERSCRIPT
57913040225154723934899044557721410711289619083u1771725021780697445983634475655422014556915035081u1657913040225154723934899044557721410711289619083superscript𝑢1771725021780697445983634475655422014556915035081superscript𝑢16\displaystyle-57913040225154723934899044557721410711289619083u^{17}-7172502178%0697445983634475655422014556915035081u^{16}- 57913040225154723934899044557721410711289619083 italic_u start_POSTSUPERSCRIPT 17 end_POSTSUPERSCRIPT - 71725021780697445983634475655422014556915035081 italic_u start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPT
+342013102863593795926888669427091384215708051101u15372018515858781494436249537857856162573039190031u14342013102863593795926888669427091384215708051101superscript𝑢15372018515858781494436249537857856162573039190031superscript𝑢14\displaystyle+342013102863593795926888669427091384215708051101u^{15}-372018515%858781494436249537857856162573039190031u^{14}+ 342013102863593795926888669427091384215708051101 italic_u start_POSTSUPERSCRIPT 15 end_POSTSUPERSCRIPT - 372018515858781494436249537857856162573039190031 italic_u start_POSTSUPERSCRIPT 14 end_POSTSUPERSCRIPT
+38518988612521747798642097388632708327825520870u13+683320644300569286753582918685333030052822410904u1238518988612521747798642097388632708327825520870superscript𝑢13683320644300569286753582918685333030052822410904superscript𝑢12\displaystyle+38518988612521747798642097388632708327825520870u^{13}+6833206443%00569286753582918685333030052822410904u^{12}+ 38518988612521747798642097388632708327825520870 italic_u start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT + 683320644300569286753582918685333030052822410904 italic_u start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT
2970397482241197003218319717238841580709777646850u11+5088846775049677228073927340176029292630832884211u102970397482241197003218319717238841580709777646850superscript𝑢115088846775049677228073927340176029292630832884211superscript𝑢10\displaystyle-2970397482241197003218319717238841580709777646850u^{11}+50888467%75049677228073927340176029292630832884211u^{10}- 2970397482241197003218319717238841580709777646850 italic_u start_POSTSUPERSCRIPT 11 end_POSTSUPERSCRIPT + 5088846775049677228073927340176029292630832884211 italic_u start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT
+2552854014890015141645854721302234484522422768968u917564458027063890239228046835218945544668191354686u8+2552854014890015141645854721302234484522422768968superscript𝑢9limit-from17564458027063890239228046835218945544668191354686superscript𝑢8\displaystyle+2552854014890015141645854721302234484522422768968u^{9}-175644580%27063890239228046835218945544668191354686u^{8}++ 2552854014890015141645854721302234484522422768968 italic_u start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT - 17564458027063890239228046835218945544668191354686 italic_u start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT +
12228030745762984509661653721081820434650658673556u7+13729158188932377522312895806683404051597636444383u612228030745762984509661653721081820434650658673556superscript𝑢7limit-from13729158188932377522312895806683404051597636444383superscript𝑢6\displaystyle 12228030745762984509661653721081820434650658673556u^{7}+13729158%188932377522312895806683404051597636444383u^{6}-12228030745762984509661653721081820434650658673556 italic_u start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT + 13729158188932377522312895806683404051597636444383 italic_u start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT -
20010176287626102917649998188221409158081985418464u5+2920187199720249325890543748558945060017654265590u4+20010176287626102917649998188221409158081985418464superscript𝑢5limit-from2920187199720249325890543748558945060017654265590superscript𝑢4\displaystyle 20010176287626102917649998188221409158081985418464u^{5}+29201871%99720249325890543748558945060017654265590u^{4}+20010176287626102917649998188221409158081985418464 italic_u start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT + 2920187199720249325890543748558945060017654265590 italic_u start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT +
6697716288602934383495117059686887992390102935500u34097497423913720638831271286382276506309116731849u2+6697716288602934383495117059686887992390102935500superscript𝑢3limit-from4097497423913720638831271286382276506309116731849superscript𝑢2\displaystyle 6697716288602934383495117059686887992390102935500u^{3}-409749742%3913720638831271286382276506309116731849u^{2}+6697716288602934383495117059686887992390102935500 italic_u start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 4097497423913720638831271286382276506309116731849 italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT +
1072361473607129792722376751912518716212791248650u1072361473607129792722376751912518716212791248650𝑢\displaystyle 1072361473607129792722376751912518716212791248650u1072361473607129792722376751912518716212791248650 italic_u
140537571390326774142168254703178467189717064628)/25883321703558459239962970115233774641678769085\displaystyle-140537571390326774142168254703178467189717064628)/25883321703558%459239962970115233774641678769085- 140537571390326774142168254703178467189717064628 ) / 25883321703558459239962970115233774641678769085
a6=(6023677266979226457200165086272886713906942u2333255964753029431649971530443586216025263516u22+\displaystyle a_{6}=(6023677266979226457200165086272886713906942u^{23}-3325596%4753029431649971530443586216025263516u^{22}+italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT = ( 6023677266979226457200165086272886713906942 italic_u start_POSTSUPERSCRIPT 23 end_POSTSUPERSCRIPT - 33255964753029431649971530443586216025263516 italic_u start_POSTSUPERSCRIPT 22 end_POSTSUPERSCRIPT +
49743084875179578611980774091455678344097670u21+55712976264443586744246225556477420522677963u2049743084875179578611980774091455678344097670superscript𝑢21limit-from55712976264443586744246225556477420522677963superscript𝑢20\displaystyle 49743084875179578611980774091455678344097670u^{21}+5571297626444%3586744246225556477420522677963u^{20}-49743084875179578611980774091455678344097670 italic_u start_POSTSUPERSCRIPT 21 end_POSTSUPERSCRIPT + 55712976264443586744246225556477420522677963 italic_u start_POSTSUPERSCRIPT 20 end_POSTSUPERSCRIPT -
724706774550250490939043727386021186327225805u19+2374394662927561546767947263400803290191034247u18+724706774550250490939043727386021186327225805superscript𝑢19limit-from2374394662927561546767947263400803290191034247superscript𝑢18\displaystyle 724706774550250490939043727386021186327225805u^{19}+237439466292%7561546767947263400803290191034247u^{18}+724706774550250490939043727386021186327225805 italic_u start_POSTSUPERSCRIPT 19 end_POSTSUPERSCRIPT + 2374394662927561546767947263400803290191034247 italic_u start_POSTSUPERSCRIPT 18 end_POSTSUPERSCRIPT +
603554635240505204370832490836018670740765548u1715370743639597909868801523557223131530337132952u16+603554635240505204370832490836018670740765548superscript𝑢17limit-from15370743639597909868801523557223131530337132952superscript𝑢16\displaystyle 603554635240505204370832490836018670740765548u^{17}-153707436395%97909868801523557223131530337132952u^{16}+603554635240505204370832490836018670740765548 italic_u start_POSTSUPERSCRIPT 17 end_POSTSUPERSCRIPT - 15370743639597909868801523557223131530337132952 italic_u start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPT +
17511412634345062676424926408790855657793893075u15+20181099323849093765711512691119322724031133019u1417511412634345062676424926408790855657793893075superscript𝑢15limit-from20181099323849093765711512691119322724031133019superscript𝑢14\displaystyle 17511412634345062676424926408790855657793893075u^{15}+2018109932%3849093765711512691119322724031133019u^{14}-17511412634345062676424926408790855657793893075 italic_u start_POSTSUPERSCRIPT 15 end_POSTSUPERSCRIPT + 20181099323849093765711512691119322724031133019 italic_u start_POSTSUPERSCRIPT 14 end_POSTSUPERSCRIPT -
50374845828844055245476612315031043335159939458u13+67807202001509410710406320198969854893338968875u1250374845828844055245476612315031043335159939458superscript𝑢13limit-from67807202001509410710406320198969854893338968875superscript𝑢12\displaystyle 50374845828844055245476612315031043335159939458u^{13}+6780720200%1509410710406320198969854893338968875u^{12}-50374845828844055245476612315031043335159939458 italic_u start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT + 67807202001509410710406320198969854893338968875 italic_u start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT -
162635874991519313909979847644908542995046222065u1127170129489972782010858032399852245676017068469u10+162635874991519313909979847644908542995046222065superscript𝑢11limit-from27170129489972782010858032399852245676017068469superscript𝑢10\displaystyle 162635874991519313909979847644908542995046222065u^{11}-271701294%89972782010858032399852245676017068469u^{10}+162635874991519313909979847644908542995046222065 italic_u start_POSTSUPERSCRIPT 11 end_POSTSUPERSCRIPT - 27170129489972782010858032399852245676017068469 italic_u start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT +
1016748221131521445736505446024631951651738622656u91045398776652722385272121676216102566602472234423u81016748221131521445736505446024631951651738622656superscript𝑢9limit-from1045398776652722385272121676216102566602472234423superscript𝑢8\displaystyle 1016748221131521445736505446024631951651738622656u^{9}-104539877%6652722385272121676216102566602472234423u^{8}-1016748221131521445736505446024631951651738622656 italic_u start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT - 1045398776652722385272121676216102566602472234423 italic_u start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT -
1621580886166598637426445029521256763885100478518u7+2769646537328602537764244216388282983330948674724u6+1621580886166598637426445029521256763885100478518superscript𝑢7limit-from2769646537328602537764244216388282983330948674724superscript𝑢6\displaystyle 1621580886166598637426445029521256763885100478518u^{7}+276964653%7328602537764244216388282983330948674724u^{6}+1621580886166598637426445029521256763885100478518 italic_u start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT + 2769646537328602537764244216388282983330948674724 italic_u start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT +
380499204117611513737183293098583683551288779273u52407147944497477746502019256665424886937109036216u4+380499204117611513737183293098583683551288779273superscript𝑢5limit-from2407147944497477746502019256665424886937109036216superscript𝑢4\displaystyle 380499204117611513737183293098583683551288779273u^{5}-2407147944%497477746502019256665424886937109036216u^{4}+380499204117611513737183293098583683551288779273 italic_u start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT - 2407147944497477746502019256665424886937109036216 italic_u start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT +
788885838440605242375101797119590858573513442627u3+563187494213492237644503207049700167772263489797u2788885838440605242375101797119590858573513442627superscript𝑢3limit-from563187494213492237644503207049700167772263489797superscript𝑢2\displaystyle 788885838440605242375101797119590858573513442627u^{3}+5631874942%13492237644503207049700167772263489797u^{2}-788885838440605242375101797119590858573513442627 italic_u start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + 563187494213492237644503207049700167772263489797 italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT -
364190339047455474961286898795751878769633423734u+limit-from364190339047455474961286898795751878769633423734𝑢\displaystyle 364190339047455474961286898795751878769633423734u+364190339047455474961286898795751878769633423734 italic_u +
48182833968966298128294670974310487182821926960)/77649965110675377719888910345701323925036307255\displaystyle 48182833968966298128294670974310487182821926960)/776499651106753%7771988891034570132392503630725548182833968966298128294670974310487182821926960 ) / 77649965110675377719888910345701323925036307255
f𝑓\displaystyle fitalic_f=1681x245986x23+22300x2239990x21+52493x2069160x19+127435x18715541x17+2982106x168579387x15absent1681superscript𝑥245986superscript𝑥2322300superscript𝑥2239990superscript𝑥2152493superscript𝑥2069160superscript𝑥19127435superscript𝑥18715541superscript𝑥172982106superscript𝑥168579387superscript𝑥15\displaystyle=1681x^{24}-5986x^{23}+22300x^{22}-39990x^{21}+52493x^{20}-69160x%^{19}+127435x^{18}-715541x^{17}+2982106x^{16}-8579387x^{15}= 1681 italic_x start_POSTSUPERSCRIPT 24 end_POSTSUPERSCRIPT - 5986 italic_x start_POSTSUPERSCRIPT 23 end_POSTSUPERSCRIPT + 22300 italic_x start_POSTSUPERSCRIPT 22 end_POSTSUPERSCRIPT - 39990 italic_x start_POSTSUPERSCRIPT 21 end_POSTSUPERSCRIPT + 52493 italic_x start_POSTSUPERSCRIPT 20 end_POSTSUPERSCRIPT - 69160 italic_x start_POSTSUPERSCRIPT 19 end_POSTSUPERSCRIPT + 127435 italic_x start_POSTSUPERSCRIPT 18 end_POSTSUPERSCRIPT - 715541 italic_x start_POSTSUPERSCRIPT 17 end_POSTSUPERSCRIPT + 2982106 italic_x start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPT - 8579387 italic_x start_POSTSUPERSCRIPT 15 end_POSTSUPERSCRIPT
+16843560x1421600425x13+11307240x12+27211590x1188164911x10+142808549x9162840401x816843560superscript𝑥1421600425superscript𝑥1311307240superscript𝑥1227211590superscript𝑥1188164911superscript𝑥10142808549superscript𝑥9162840401superscript𝑥8\displaystyle+16843560x^{14}-21600425x^{13}+11307240x^{12}+27211590x^{11}-8816%4911x^{10}+142808549x^{9}-162840401x^{8}+ 16843560 italic_x start_POSTSUPERSCRIPT 14 end_POSTSUPERSCRIPT - 21600425 italic_x start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT + 11307240 italic_x start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT + 27211590 italic_x start_POSTSUPERSCRIPT 11 end_POSTSUPERSCRIPT - 88164911 italic_x start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT + 142808549 italic_x start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT - 162840401 italic_x start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT
+135166869x784018445x6+43441328x516680125x4+2754739x371891x2+83004x18983135166869superscript𝑥784018445superscript𝑥643441328superscript𝑥516680125superscript𝑥42754739superscript𝑥371891superscript𝑥283004𝑥18983\displaystyle+135166869x^{7}-84018445x^{6}+43441328x^{5}-16680125x^{4}+2754739%x^{3}-71891x^{2}+83004x-18983+ 135166869 italic_x start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT - 84018445 italic_x start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT + 43441328 italic_x start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT - 16680125 italic_x start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT + 2754739 italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 71891 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 83004 italic_x - 18983
a1subscript𝑎1\displaystyle a_{1}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT=uabsent𝑢\displaystyle=u= italic_u
a2subscript𝑎2\displaystyle a_{2}italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT=(5080711316291201675045315029971932094515171194262551876402922275297812059962895646475519509466071148791u23\displaystyle=(508071131629120167504531502997193209451517119426255187640292227%5297812059962895646475519509466071148791u^{23}= ( 5080711316291201675045315029971932094515171194262551876402922275297812059962895646475519509466071148791 italic_u start_POSTSUPERSCRIPT 23 end_POSTSUPERSCRIPT
12753693607455295732738580733641976732154841589355581873326655831351407883927919426061732744778964188151u2212753693607455295732738580733641976732154841589355581873326655831351407883927919426061732744778964188151superscript𝑢22\displaystyle-1275369360745529573273858073364197673215484158935558187332665583%1351407883927919426061732744778964188151u^{22}- 12753693607455295732738580733641976732154841589355581873326655831351407883927919426061732744778964188151 italic_u start_POSTSUPERSCRIPT 22 end_POSTSUPERSCRIPT
+54069832117614919758788856723434751858774288600645563906045605920254189317594408019479510320011479331632u2154069832117614919758788856723434751858774288600645563906045605920254189317594408019479510320011479331632superscript𝑢21\displaystyle+5406983211761491975878885672343475185877428860064556390604560592%0254189317594408019479510320011479331632u^{21}+ 54069832117614919758788856723434751858774288600645563906045605920254189317594408019479510320011479331632 italic_u start_POSTSUPERSCRIPT 21 end_POSTSUPERSCRIPT
64171810139705593311549688845398647510654314087215251996453394295100785428045746135683427184595158625737u2064171810139705593311549688845398647510654314087215251996453394295100785428045746135683427184595158625737superscript𝑢20\displaystyle-6417181013970559331154968884539864751065431408721525199645339429%5100785428045746135683427184595158625737u^{20}- 64171810139705593311549688845398647510654314087215251996453394295100785428045746135683427184595158625737 italic_u start_POSTSUPERSCRIPT 20 end_POSTSUPERSCRIPT
+91812802564648860740079070059171286918702909026638026909196849698408351628788391203150122677920484230008u1991812802564648860740079070059171286918702909026638026909196849698408351628788391203150122677920484230008superscript𝑢19\displaystyle+9181280256464886074007907005917128691870290902663802690919684969%8408351628788391203150122677920484230008u^{19}+ 91812802564648860740079070059171286918702909026638026909196849698408351628788391203150122677920484230008 italic_u start_POSTSUPERSCRIPT 19 end_POSTSUPERSCRIPT
112784143198863886309829926210720893607401119569750284611521033738271893099639293736870930764588320057506u18112784143198863886309829926210720893607401119569750284611521033738271893099639293736870930764588320057506superscript𝑢18\displaystyle-1127841431988638863098299262107208936074011195697502846115210337%38271893099639293736870930764588320057506u^{18}- 112784143198863886309829926210720893607401119569750284611521033738271893099639293736870930764588320057506 italic_u start_POSTSUPERSCRIPT 18 end_POSTSUPERSCRIPT
+266993574401436334880628797187040532692164231789288123016142171155043722506161663604915778669773828347633u17266993574401436334880628797187040532692164231789288123016142171155043722506161663604915778669773828347633superscript𝑢17\displaystyle+2669935744014363348806287971870405326921642317892881230161421711%55043722506161663604915778669773828347633u^{17}+ 266993574401436334880628797187040532692164231789288123016142171155043722506161663604915778669773828347633 italic_u start_POSTSUPERSCRIPT 17 end_POSTSUPERSCRIPT
1882434630026253110090507361593696475932312785977981282080964687537281069003785439874439742965145563982151u161882434630026253110090507361593696475932312785977981282080964687537281069003785439874439742965145563982151superscript𝑢16\displaystyle-1882434630026253110090507361593696475932312785977981282080964687%537281069003785439874439742965145563982151u^{16}- 1882434630026253110090507361593696475932312785977981282080964687537281069003785439874439742965145563982151 italic_u start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPT
+7037348216383439398255005275218849037350878365992615044777412069900720944953368096124521037887282739732092u157037348216383439398255005275218849037350878365992615044777412069900720944953368096124521037887282739732092superscript𝑢15\displaystyle+7037348216383439398255005275218849037350878365992615044777412069%900720944953368096124521037887282739732092u^{15}+ 7037348216383439398255005275218849037350878365992615044777412069900720944953368096124521037887282739732092 italic_u start_POSTSUPERSCRIPT 15 end_POSTSUPERSCRIPT
18558813961738488450840092228452126208816419103057149018071073850987086335742763827370253050575813198524146u1418558813961738488450840092228452126208816419103057149018071073850987086335742763827370253050575813198524146superscript𝑢14\displaystyle-1855881396173848845084009222845212620881641910305714901807107385%0987086335742763827370253050575813198524146u^{14}- 18558813961738488450840092228452126208816419103057149018071073850987086335742763827370253050575813198524146 italic_u start_POSTSUPERSCRIPT 14 end_POSTSUPERSCRIPT
+31482992019437502836721761148176977852655580821846015698342688092458849196920763013751377697513421519775506u1331482992019437502836721761148176977852655580821846015698342688092458849196920763013751377697513421519775506superscript𝑢13\displaystyle+3148299201943750283672176114817697785265558082184601569834268809%2458849196920763013751377697513421519775506u^{13}+ 31482992019437502836721761148176977852655580821846015698342688092458849196920763013751377697513421519775506 italic_u start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT
32374909927500272692005105298130443509720633385708540023237812041007754588404370142018686585807055511680895u1232374909927500272692005105298130443509720633385708540023237812041007754588404370142018686585807055511680895superscript𝑢12\displaystyle-3237490992750027269200510529813044350972063338570854002323781204%1007754588404370142018686585807055511680895u^{12}- 32374909927500272692005105298130443509720633385708540023237812041007754588404370142018686585807055511680895 italic_u start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT
+355769177496430747946255195476089259345659792966420686511250173051079281457305855394233298739711155272619u11355769177496430747946255195476089259345659792966420686511250173051079281457305855394233298739711155272619superscript𝑢11\displaystyle+3557691774964307479462551954760892593456597929664206865112501730%51079281457305855394233298739711155272619u^{11}+ 355769177496430747946255195476089259345659792966420686511250173051079281457305855394233298739711155272619 italic_u start_POSTSUPERSCRIPT 11 end_POSTSUPERSCRIPT
+82597329193796739665236162523064206343027458450110894615564870143940026479112969448026127313140045973409904u1082597329193796739665236162523064206343027458450110894615564870143940026479112969448026127313140045973409904superscript𝑢10\displaystyle+8259732919379673966523616252306420634302745845011089461556487014%3940026479112969448026127313140045973409904u^{10}+ 82597329193796739665236162523064206343027458450110894615564870143940026479112969448026127313140045973409904 italic_u start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT
180157650398530826072183728787852228632339679591090150346770906810818215829832155807094288409714988689979556u9+limit-from180157650398530826072183728787852228632339679591090150346770906810818215829832155807094288409714988689979556superscript𝑢9\displaystyle-1801576503985308260721837287878522286323396795910901503467709068%10818215829832155807094288409714988689979556u^{9}+- 180157650398530826072183728787852228632339679591090150346770906810818215829832155807094288409714988689979556 italic_u start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT +
243580084781714154986562627964985100993958725216091920036459840253065927598220207312391977205452274658388668u8limit-from243580084781714154986562627964985100993958725216091920036459840253065927598220207312391977205452274658388668superscript𝑢8\displaystyle 2435800847817141549865626279649851009939587252160919200364598402%53065927598220207312391977205452274658388668u^{8}-243580084781714154986562627964985100993958725216091920036459840253065927598220207312391977205452274658388668 italic_u start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT -
237759738511414395938248254415899889460500620529636912438245233784360496487088586670692225074624389340450754u7+limit-from237759738511414395938248254415899889460500620529636912438245233784360496487088586670692225074624389340450754superscript𝑢7\displaystyle 2377597385114143959382482544158998894605006205296369124382452337%84360496487088586670692225074624389340450754u^{7}+237759738511414395938248254415899889460500620529636912438245233784360496487088586670692225074624389340450754 italic_u start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT +
159694395598340571554556951035538321217793197950588557107187395329156224600232620053563552890063887941835725u6limit-from159694395598340571554556951035538321217793197950588557107187395329156224600232620053563552890063887941835725superscript𝑢6\displaystyle 1596943955983405715545569510355383212177931979505885571071873953%29156224600232620053563552890063887941835725u^{6}-159694395598340571554556951035538321217793197950588557107187395329156224600232620053563552890063887941835725 italic_u start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT -
86003911809443829840992272273315395253839621938405732731070535711686629282342243034870290183101116842009764u5+limit-from86003911809443829840992272273315395253839621938405732731070535711686629282342243034870290183101116842009764superscript𝑢5\displaystyle 8600391180944382984099227227331539525383962193840573273107053571%1686629282342243034870290183101116842009764u^{5}+86003911809443829840992272273315395253839621938405732731070535711686629282342243034870290183101116842009764 italic_u start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT +
39612198409262296948672243689664508173520181277512957822574210133699852603256862010435890773707310082876229u4limit-from39612198409262296948672243689664508173520181277512957822574210133699852603256862010435890773707310082876229superscript𝑢4\displaystyle 3961219840926229694867224368966450817352018127751295782257421013%3699852603256862010435890773707310082876229u^{4}-39612198409262296948672243689664508173520181277512957822574210133699852603256862010435890773707310082876229 italic_u start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT -
7429707948361218460675985566192592433627458250659525673161012946787623695695907763802682362140849932504699u3limit-from7429707948361218460675985566192592433627458250659525673161012946787623695695907763802682362140849932504699superscript𝑢3\displaystyle 7429707948361218460675985566192592433627458250659525673161012946%787623695695907763802682362140849932504699u^{3}-7429707948361218460675985566192592433627458250659525673161012946787623695695907763802682362140849932504699 italic_u start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT -
330334451599414197928571848323724030308555367730457244580192995981742168797733148853654492862067961911437u2limit-from330334451599414197928571848323724030308555367730457244580192995981742168797733148853654492862067961911437superscript𝑢2\displaystyle 3303344515994141979285718483237240303085553677304572445801929959%81742168797733148853654492862067961911437u^{2}-330334451599414197928571848323724030308555367730457244580192995981742168797733148853654492862067961911437 italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT -
37784255778831912002496243947012035732405449437287254627133335897159740405773750398653020625508236955499u+limit-from37784255778831912002496243947012035732405449437287254627133335897159740405773750398653020625508236955499𝑢\displaystyle 3778425577883191200249624394701203573240544943728725462713333589%7159740405773750398653020625508236955499u+37784255778831912002496243947012035732405449437287254627133335897159740405773750398653020625508236955499 italic_u +
49587787120498247471162692500576877689081850593319796217659851252795712853244197552204673927671584747334)\displaystyle 4958778712049824747116269250057687768908185059331979621765985125%2795712853244197552204673927671584747334)49587787120498247471162692500576877689081850593319796217659851252795712853244197552204673927671584747334 )
2161498275682573022026195817125602128349794385606242898215815951672587213205798756995056266577472406695321614982756825730220261958171256021283497943856062428982158159516725872132057987569950562665774724066953\displaystyle 2161498275682573022026195817125602128349794385606242898215815951%672587213205798756995056266577472406695321614982756825730220261958171256021283497943856062428982158159516725872132057987569950562665774724066953
a3subscript𝑎3\displaystyle a_{3}italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT=(1267953621394643931885341434613612049760036602269253793059918621605641016810904866238021008440986740711u23\displaystyle=(-12679536213946439318853414346136120497600366022692537930599186%21605641016810904866238021008440986740711u^{23}= ( - 1267953621394643931885341434613612049760036602269253793059918621605641016810904866238021008440986740711 italic_u start_POSTSUPERSCRIPT 23 end_POSTSUPERSCRIPT
+5275373735623589195307457243762060865281425700352505105458982426481720318122004342734954529439720012916u22limit-from5275373735623589195307457243762060865281425700352505105458982426481720318122004342734954529439720012916superscript𝑢22\displaystyle+5275373735623589195307457243762060865281425700352505105458982426%481720318122004342734954529439720012916u^{22}-+ 5275373735623589195307457243762060865281425700352505105458982426481720318122004342734954529439720012916 italic_u start_POSTSUPERSCRIPT 22 end_POSTSUPERSCRIPT -
17555055568031984010449051183407494724654485724608688822385285076722424890771359537667612108115789516286u21+limit-from17555055568031984010449051183407494724654485724608688822385285076722424890771359537667612108115789516286superscript𝑢21\displaystyle 1755505556803198401044905118340749472465448572460868882238528507%6722424890771359537667612108115789516286u^{21}+17555055568031984010449051183407494724654485724608688822385285076722424890771359537667612108115789516286 italic_u start_POSTSUPERSCRIPT 21 end_POSTSUPERSCRIPT +
36078504248466092399890585888097093863783472660149717313597105854481920753785509504402589398466773809984u20limit-from36078504248466092399890585888097093863783472660149717313597105854481920753785509504402589398466773809984superscript𝑢20\displaystyle 3607850424846609239989058588809709386378347266014971731359710585%4481920753785509504402589398466773809984u^{20}-36078504248466092399890585888097093863783472660149717313597105854481920753785509504402589398466773809984 italic_u start_POSTSUPERSCRIPT 20 end_POSTSUPERSCRIPT -
37946408584631792573391976678443106807345416075491575748930817752782479779199124812188792120685429509423u19+limit-from37946408584631792573391976678443106807345416075491575748930817752782479779199124812188792120685429509423superscript𝑢19\displaystyle 3794640858463179257339197667844310680734541607549157574893081775%2782479779199124812188792120685429509423u^{19}+37946408584631792573391976678443106807345416075491575748930817752782479779199124812188792120685429509423 italic_u start_POSTSUPERSCRIPT 19 end_POSTSUPERSCRIPT +
58256193192825962190977860557381055321554962318162351770017510873224764931395211715237402145426029985804u18limit-from58256193192825962190977860557381055321554962318162351770017510873224764931395211715237402145426029985804superscript𝑢18\displaystyle 5825619319282596219097786055738105532155496231816235177001751087%3224764931395211715237402145426029985804u^{18}-58256193192825962190977860557381055321554962318162351770017510873224764931395211715237402145426029985804 italic_u start_POSTSUPERSCRIPT 18 end_POSTSUPERSCRIPT -
95207608277311435721153691858444472017009261040407240049972859901581903957772201656688626360027785665037u17+limit-from95207608277311435721153691858444472017009261040407240049972859901581903957772201656688626360027785665037superscript𝑢17\displaystyle 9520760827731143572115369185844447201700926104040724004997285990%1581903957772201656688626360027785665037u^{17}+95207608277311435721153691858444472017009261040407240049972859901581903957772201656688626360027785665037 italic_u start_POSTSUPERSCRIPT 17 end_POSTSUPERSCRIPT +
565346082799158327646871369366900777220959351103086108323607828303863859034761894583940459855975516785194u16limit-from565346082799158327646871369366900777220959351103086108323607828303863859034761894583940459855975516785194superscript𝑢16\displaystyle 5653460827991583276468713693669007772209593511030861083236078283%03863859034761894583940459855975516785194u^{16}-565346082799158327646871369366900777220959351103086108323607828303863859034761894583940459855975516785194 italic_u start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPT -
2476231504856247976047298453759515993343831083831653917785564323136319966170797510904548844967133409657670u15+limit-from2476231504856247976047298453759515993343831083831653917785564323136319966170797510904548844967133409657670superscript𝑢15\displaystyle 2476231504856247976047298453759515993343831083831653917785564323%136319966170797510904548844967133409657670u^{15}+2476231504856247976047298453759515993343831083831653917785564323136319966170797510904548844967133409657670 italic_u start_POSTSUPERSCRIPT 15 end_POSTSUPERSCRIPT +
7125312232429473312047951375420296867035772620446711045133308422259661885659812328712231767914046947934958u14limit-from7125312232429473312047951375420296867035772620446711045133308422259661885659812328712231767914046947934958superscript𝑢14\displaystyle 7125312232429473312047951375420296867035772620446711045133308422%259661885659812328712231767914046947934958u^{14}-7125312232429473312047951375420296867035772620446711045133308422259661885659812328712231767914046947934958 italic_u start_POSTSUPERSCRIPT 14 end_POSTSUPERSCRIPT -
14109512271420932504030970766453752903773844552573561240075878749128624028151174987505867791907853260748076u13+limit-from14109512271420932504030970766453752903773844552573561240075878749128624028151174987505867791907853260748076superscript𝑢13\displaystyle 1410951227142093250403097076645375290377384455257356124007587874%9128624028151174987505867791907853260748076u^{13}+14109512271420932504030970766453752903773844552573561240075878749128624028151174987505867791907853260748076 italic_u start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT +
17560172929344324540852810600134903480938284905829554346787162037635821366007680657414419368072805771438339u1217560172929344324540852810600134903480938284905829554346787162037635821366007680657414419368072805771438339superscript𝑢12\displaystyle 1756017292934432454085281060013490348093828490582955434678716203%7635821366007680657414419368072805771438339u^{12}17560172929344324540852810600134903480938284905829554346787162037635821366007680657414419368072805771438339 italic_u start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT
8185431832605214591009680659652586245149536486491725589340235627802890427221906509795978045372139654794230u118185431832605214591009680659652586245149536486491725589340235627802890427221906509795978045372139654794230superscript𝑢11\displaystyle-8185431832605214591009680659652586245149536486491725589340235627%802890427221906509795978045372139654794230u^{11}- 8185431832605214591009680659652586245149536486491725589340235627802890427221906509795978045372139654794230 italic_u start_POSTSUPERSCRIPT 11 end_POSTSUPERSCRIPT
24951833415201216229210428288100206205956546524989372565857871998830738064658316396620449552045840774648931u1024951833415201216229210428288100206205956546524989372565857871998830738064658316396620449552045840774648931superscript𝑢10\displaystyle-2495183341520121622921042828810020620595654652498937256585787199%8830738064658316396620449552045840774648931u^{10}- 24951833415201216229210428288100206205956546524989372565857871998830738064658316396620449552045840774648931 italic_u start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT
+76479714860692833645109507162323723641483509078907169453909585804969957921961000380996735122563865728165733u9limit-from76479714860692833645109507162323723641483509078907169453909585804969957921961000380996735122563865728165733superscript𝑢9\displaystyle+7647971486069283364510950716232372364148350907890716945390958580%4969957921961000380996735122563865728165733u^{9}-+ 76479714860692833645109507162323723641483509078907169453909585804969957921961000380996735122563865728165733 italic_u start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT -
117395779234788929216004627741481518944230965443116402981929577077829124619800405259020580076462879991849797u8+limit-from117395779234788929216004627741481518944230965443116402981929577077829124619800405259020580076462879991849797superscript𝑢8\displaystyle 1173957792347889292160046277414815189442309654431164029819295770%77829124619800405259020580076462879991849797u^{8}+117395779234788929216004627741481518944230965443116402981929577077829124619800405259020580076462879991849797 italic_u start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT +
128263737595606083936268381050204482376314347398853447479072595036809193721366649969447441077094598291622074u7limit-from128263737595606083936268381050204482376314347398853447479072595036809193721366649969447441077094598291622074superscript𝑢7\displaystyle 1282637375956060839362683810502044823763143473988534474790725950%36809193721366649969447441077094598291622074u^{7}-128263737595606083936268381050204482376314347398853447479072595036809193721366649969447441077094598291622074 italic_u start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT -
99285323319034229295344873425773728315910290467622601378134186928070563896613305466138588259417348307050977u6+limit-from99285323319034229295344873425773728315910290467622601378134186928070563896613305466138588259417348307050977superscript𝑢6\displaystyle 9928532331903422929534487342577372831591029046762260137813418692%8070563896613305466138588259417348307050977u^{6}+99285323319034229295344873425773728315910290467622601378134186928070563896613305466138588259417348307050977 italic_u start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT +
54369930555810441313208399998920746082005039558482826888973332086696898409314926047850098394085878279218025u5limit-from54369930555810441313208399998920746082005039558482826888973332086696898409314926047850098394085878279218025superscript𝑢5\displaystyle 5436993055581044131320839999892074608200503955848282688897333208%6696898409314926047850098394085878279218025u^{5}-54369930555810441313208399998920746082005039558482826888973332086696898409314926047850098394085878279218025 italic_u start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT -
27178936519809816136511314252581648853420344481341276724430304429620457718671912543389459540195418314978262u4+limit-from27178936519809816136511314252581648853420344481341276724430304429620457718671912543389459540195418314978262superscript𝑢4\displaystyle 2717893651980981613651131425258164885342034448134127672443030442%9620457718671912543389459540195418314978262u^{4}+27178936519809816136511314252581648853420344481341276724430304429620457718671912543389459540195418314978262 italic_u start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT +
8936498262894022918521035969814361816088197835020755567538304524904381640656220272920029079933030404195998u3+limit-from8936498262894022918521035969814361816088197835020755567538304524904381640656220272920029079933030404195998superscript𝑢3\displaystyle 8936498262894022918521035969814361816088197835020755567538304524%904381640656220272920029079933030404195998u^{3}+8936498262894022918521035969814361816088197835020755567538304524904381640656220272920029079933030404195998 italic_u start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT +
176042836799562043279335138362232949001782957580122994597843763667203382525903669069511374902748262707034u2+limit-from176042836799562043279335138362232949001782957580122994597843763667203382525903669069511374902748262707034superscript𝑢2\displaystyle 1760428367995620432793351383622329490017829575801229945978437636%67203382525903669069511374902748262707034u^{2}+176042836799562043279335138362232949001782957580122994597843763667203382525903669069511374902748262707034 italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT +
123551332640837460712496765532364611121211139954023527865550089484795930156394779589094505594735194585689ulimit-from123551332640837460712496765532364611121211139954023527865550089484795930156394779589094505594735194585689𝑢\displaystyle 1235513326408374607124967655323646111212111399540235278655500894%84795930156394779589094505594735194585689u-123551332640837460712496765532364611121211139954023527865550089484795930156394779589094505594735194585689 italic_u -
247811303864874587719009648668346059788929541846704997907236451386293632246561954505235415172247375021367)\displaystyle 2478113038648745877190096486683460597889295418467049979072364513%86293632246561954505235415172247375021367)247811303864874587719009648668346059788929541846704997907236451386293632246561954505235415172247375021367 )
/194534844811431571982357623541304191551481494704561860839423435650532849188521888129555063991972516602577absent194534844811431571982357623541304191551481494704561860839423435650532849188521888129555063991972516602577\displaystyle/1945348448114315719823576235413041915514814947045618608394234356%50532849188521888129555063991972516602577/ 194534844811431571982357623541304191551481494704561860839423435650532849188521888129555063991972516602577
a4subscript𝑎4\displaystyle a_{4}italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT=(21602187482604525525912019550410102008164529573509617790207723552126993177062018251821281784387073323023u23\displaystyle=(216021874826045255259120195504101020081645295735096177902077235%52126993177062018251821281784387073323023u^{23}-= ( 21602187482604525525912019550410102008164529573509617790207723552126993177062018251821281784387073323023 italic_u start_POSTSUPERSCRIPT 23 end_POSTSUPERSCRIPT -
54118645699518421860164695979018486987733084579088589138919296152554879292400289333451439352912231516049u22+limit-from54118645699518421860164695979018486987733084579088589138919296152554879292400289333451439352912231516049superscript𝑢22\displaystyle 5411864569951842186016469597901848698773308457908858913891929615%2554879292400289333451439352912231516049u^{22}+54118645699518421860164695979018486987733084579088589138919296152554879292400289333451439352912231516049 italic_u start_POSTSUPERSCRIPT 22 end_POSTSUPERSCRIPT +
229632348454720678031228782178364359375512314159960601935921046165742218176157986704758918174177036598027u21limit-from229632348454720678031228782178364359375512314159960601935921046165742218176157986704758918174177036598027superscript𝑢21\displaystyle 2296323484547206780312287821783643593755123141599606019359210461%65742218176157986704758918174177036598027u^{21}-229632348454720678031228782178364359375512314159960601935921046165742218176157986704758918174177036598027 italic_u start_POSTSUPERSCRIPT 21 end_POSTSUPERSCRIPT -
271714240938330656788278481251872665546566596649633772570335085442481467613870243914878773892675607655031u20+limit-from271714240938330656788278481251872665546566596649633772570335085442481467613870243914878773892675607655031superscript𝑢20\displaystyle 2717142409383306567882784812518726655465665966496337725703350854%42481467613870243914878773892675607655031u^{20}+271714240938330656788278481251872665546566596649633772570335085442481467613870243914878773892675607655031 italic_u start_POSTSUPERSCRIPT 20 end_POSTSUPERSCRIPT +
389240084671506178985991557668532896811619405971305122138729071942997235822522833986887261769058574687206u19limit-from389240084671506178985991557668532896811619405971305122138729071942997235822522833986887261769058574687206superscript𝑢19\displaystyle 3892400846715061789859915576685328968116194059713051221387290719%42997235822522833986887261769058574687206u^{19}-389240084671506178985991557668532896811619405971305122138729071942997235822522833986887261769058574687206 italic_u start_POSTSUPERSCRIPT 19 end_POSTSUPERSCRIPT -
477809609240547982324560429601105707229097492722679259454771746548049388515573721991902331874540454360677u18+limit-from477809609240547982324560429601105707229097492722679259454771746548049388515573721991902331874540454360677superscript𝑢18\displaystyle 4778096092405479823245604296011057072290974927226792594547717465%48049388515573721991902331874540454360677u^{18}+477809609240547982324560429601105707229097492722679259454771746548049388515573721991902331874540454360677 italic_u start_POSTSUPERSCRIPT 18 end_POSTSUPERSCRIPT +
1134307244791495073091508257061282838089035308203482251448828376035701265351872142887357224173393587367217u17limit-from1134307244791495073091508257061282838089035308203482251448828376035701265351872142887357224173393587367217superscript𝑢17\displaystyle 1134307244791495073091508257061282838089035308203482251448828376%035701265351872142887357224173393587367217u^{17}-1134307244791495073091508257061282838089035308203482251448828376035701265351872142887357224173393587367217 italic_u start_POSTSUPERSCRIPT 17 end_POSTSUPERSCRIPT -
7998241550184542723669282269744183912558735074840815505393916664721266008981821312355998718933211562296046u16+limit-from7998241550184542723669282269744183912558735074840815505393916664721266008981821312355998718933211562296046superscript𝑢16\displaystyle 7998241550184542723669282269744183912558735074840815505393916664%721266008981821312355998718933211562296046u^{16}+7998241550184542723669282269744183912558735074840815505393916664721266008981821312355998718933211562296046 italic_u start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPT +
29884350513703593643102315356337607220935131216738303316137066445444666720743574643185127746788378881399417u15limit-from29884350513703593643102315356337607220935131216738303316137066445444666720743574643185127746788378881399417superscript𝑢15\displaystyle 2988435051370359364310231535633760722093513121673830331613706644%5444666720743574643185127746788378881399417u^{15}-29884350513703593643102315356337607220935131216738303316137066445444666720743574643185127746788378881399417 italic_u start_POSTSUPERSCRIPT 15 end_POSTSUPERSCRIPT -
78762185363323164166049086231948056172425383095891323023925039698471564949121163272924901385013049687411942u14+limit-from78762185363323164166049086231948056172425383095891323023925039698471564949121163272924901385013049687411942superscript𝑢14\displaystyle 7876218536332316416604908623194805617242538309589132302392503969%8471564949121163272924901385013049687411942u^{14}+78762185363323164166049086231948056172425383095891323023925039698471564949121163272924901385013049687411942 italic_u start_POSTSUPERSCRIPT 14 end_POSTSUPERSCRIPT +
133482834008573196537635614349239735193657361930408612616107380134767929957874016841359336191716810052372943u13limit-from133482834008573196537635614349239735193657361930408612616107380134767929957874016841359336191716810052372943superscript𝑢13\displaystyle 1334828340085731965376356143492397351936573619304086126161073801%34767929957874016841359336191716810052372943u^{13}-133482834008573196537635614349239735193657361930408612616107380134767929957874016841359336191716810052372943 italic_u start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT -
137053960702884121696654538422991387640058327668982745386035913492597685843425752919872849804140634643955270u12+limit-from137053960702884121696654538422991387640058327668982745386035913492597685843425752919872849804140634643955270superscript𝑢12\displaystyle 1370539607028841216966545384229913876400583276689827453860359134%92597685843425752919872849804140634643955270u^{12}+137053960702884121696654538422991387640058327668982745386035913492597685843425752919872849804140634643955270 italic_u start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT +
1007732765399352112281231332865427721350305786463458957589706455015055837197826332157186782126834563180874u11+limit-from1007732765399352112281231332865427721350305786463458957589706455015055837197826332157186782126834563180874superscript𝑢11\displaystyle 1007732765399352112281231332865427721350305786463458957589706455%015055837197826332157186782126834563180874u^{11}+1007732765399352112281231332865427721350305786463458957589706455015055837197826332157186782126834563180874 italic_u start_POSTSUPERSCRIPT 11 end_POSTSUPERSCRIPT +
350815061469691357556481842623578505108181053626885246843957222150401839155498648976140821847608132650413877u10limit-from350815061469691357556481842623578505108181053626885246843957222150401839155498648976140821847608132650413877superscript𝑢10\displaystyle 3508150614696913575564818426235785051081810536268852468439572221%50401839155498648976140821847608132650413877u^{10}-350815061469691357556481842623578505108181053626885246843957222150401839155498648976140821847608132650413877 italic_u start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT -
763813973953090008018229314929738927932718514072630074182706478799188355923066370269118304250507133175357855u9+limit-from763813973953090008018229314929738927932718514072630074182706478799188355923066370269118304250507133175357855superscript𝑢9\displaystyle 7638139739530900080182293149297389279327185140726300741827064787%99188355923066370269118304250507133175357855u^{9}+763813973953090008018229314929738927932718514072630074182706478799188355923066370269118304250507133175357855 italic_u start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT +
1031649984516044068142490191656580092983268100075699233137397944523070346671264968193662151018512880345885148u8limit-from1031649984516044068142490191656580092983268100075699233137397944523070346671264968193662151018512880345885148superscript𝑢8\displaystyle 1031649984516044068142490191656580092983268100075699233137397944%523070346671264968193662151018512880345885148u^{8}-1031649984516044068142490191656580092983268100075699233137397944523070346671264968193662151018512880345885148 italic_u start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT -
1006448713835171920508676798242363762206868954831955057736941294417464520964723853766337832433285918952616800u7+limit-from1006448713835171920508676798242363762206868954831955057736941294417464520964723853766337832433285918952616800superscript𝑢7\displaystyle 1006448713835171920508676798242363762206868954831955057736941294%417464520964723853766337832433285918952616800u^{7}+1006448713835171920508676798242363762206868954831955057736941294417464520964723853766337832433285918952616800 italic_u start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT +
676121653866216250833857061969645105016401036047282602052108615892432889649655824120715818859038851438719692u6limit-from676121653866216250833857061969645105016401036047282602052108615892432889649655824120715818859038851438719692superscript𝑢6\displaystyle 6761216538662162508338570619696451050164010360472826020521086158%92432889649655824120715818859038851438719692u^{6}-676121653866216250833857061969645105016401036047282602052108615892432889649655824120715818859038851438719692 italic_u start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT -
365315630672062232654624041035475581706129355189790394773930035666365242220829438972172664129492203081168695u5+limit-from365315630672062232654624041035475581706129355189790394773930035666365242220829438972172664129492203081168695superscript𝑢5\displaystyle 3653156306720622326546240410354755817061293551897903947739300356%66365242220829438972172664129492203081168695u^{5}+365315630672062232654624041035475581706129355189790394773930035666365242220829438972172664129492203081168695 italic_u start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT +
169928340780310228016165329122583691595314152501859958821190340588839951126126425702399873705069760335867555u4limit-from169928340780310228016165329122583691595314152501859958821190340588839951126126425702399873705069760335867555superscript𝑢4\displaystyle 1699283407803102280161653291225836915953141525018599588211903405%88839951126126425702399873705069760335867555u^{4}-169928340780310228016165329122583691595314152501859958821190340588839951126126425702399873705069760335867555 italic_u start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT -
33027031516673626174814444526405449658343504550952452347595717905925904912242741639580360945517081829067445u3limit-from33027031516673626174814444526405449658343504550952452347595717905925904912242741639580360945517081829067445superscript𝑢3\displaystyle 3302703151667362617481444452640544965834350455095245234759571790%5925904912242741639580360945517081829067445u^{3}-33027031516673626174814444526405449658343504550952452347595717905925904912242741639580360945517081829067445 italic_u start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT -
574398909974531896187652939181193457976414409573391297770225943328270319549339393818609023946710634861218u2limit-from574398909974531896187652939181193457976414409573391297770225943328270319549339393818609023946710634861218superscript𝑢2\displaystyle 5743989099745318961876529391811934579764144095733912977702259433%28270319549339393818609023946710634861218u^{2}-574398909974531896187652939181193457976414409573391297770225943328270319549339393818609023946710634861218 italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT -
728396188739580785368924252547802968651011165698504498104526291751071107199476419143522981427300087144081u+limit-from728396188739580785368924252547802968651011165698504498104526291751071107199476419143522981427300087144081𝑢\displaystyle 7283961887395807853689242525478029686510111656985044981045262917%51071107199476419143522981427300087144081u+728396188739580785368924252547802968651011165698504498104526291751071107199476419143522981427300087144081 italic_u +
271664810698901198617706630651807017787447689823034224892627859881305071186618314533095235468764334213720)\displaystyle 2716648106989011986177066306518070177874476898230342248926278598%81305071186618314533095235468764334213720)271664810698901198617706630651807017787447689823034224892627859881305071186618314533095235468764334213720 )
/64844948270477190660785874513768063850493831568187286946474478550177616396173962709851687997324172200859absent64844948270477190660785874513768063850493831568187286946474478550177616396173962709851687997324172200859\displaystyle/6484494827047719066078587451376806385049383156818728694647447855%0177616396173962709851687997324172200859/ 64844948270477190660785874513768063850493831568187286946474478550177616396173962709851687997324172200859
a5subscript𝑎5\displaystyle a_{5}italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT=(38925109246190325667924864922697736566749207129037283818198201680170886992904640592700404549963347199512u23\displaystyle=(389251092461903256679248649226977365667492071290372838181982016%80170886992904640592700404549963347199512u^{23}-= ( 38925109246190325667924864922697736566749207129037283818198201680170886992904640592700404549963347199512 italic_u start_POSTSUPERSCRIPT 23 end_POSTSUPERSCRIPT -
97304687004202519301638463038984335702388161760597362278427940982276163923129353032410251567051407236167u22+limit-from97304687004202519301638463038984335702388161760597362278427940982276163923129353032410251567051407236167superscript𝑢22\displaystyle 9730468700420251930163846303898433570238816176059736227842794098%2276163923129353032410251567051407236167u^{22}+97304687004202519301638463038984335702388161760597362278427940982276163923129353032410251567051407236167 italic_u start_POSTSUPERSCRIPT 22 end_POSTSUPERSCRIPT +
413489881392674323130145426407178872591879883223908197731954258071948111901480999775280191710173544246619u21limit-from413489881392674323130145426407178872591879883223908197731954258071948111901480999775280191710173544246619superscript𝑢21\displaystyle 4134898813926743231301454264071788725918798832239081977319542580%71948111901480999775280191710173544246619u^{21}-413489881392674323130145426407178872591879883223908197731954258071948111901480999775280191710173544246619 italic_u start_POSTSUPERSCRIPT 21 end_POSTSUPERSCRIPT -
487834725397833642735996339982156677260703237328391837824684425817645677463132895183618864588299521039639u20+limit-from487834725397833642735996339982156677260703237328391837824684425817645677463132895183618864588299521039639superscript𝑢20\displaystyle 4878347253978336427359963399821566772607032373283918378246844258%17645677463132895183618864588299521039639u^{20}+487834725397833642735996339982156677260703237328391837824684425817645677463132895183618864588299521039639 italic_u start_POSTSUPERSCRIPT 20 end_POSTSUPERSCRIPT +
701127013907320259429603180164346758064732506692126691555326828509371238162600469908829030757269011344250u19limit-from701127013907320259429603180164346758064732506692126691555326828509371238162600469908829030757269011344250superscript𝑢19\displaystyle 7011270139073202594296031801643467580647325066921266915553268285%09371238162600469908829030757269011344250u^{19}-701127013907320259429603180164346758064732506692126691555326828509371238162600469908829030757269011344250 italic_u start_POSTSUPERSCRIPT 19 end_POSTSUPERSCRIPT -
859072765941175075648439657341733433805462257041987969315445073540647832041592350614273857719119348322752u18+limit-from859072765941175075648439657341733433805462257041987969315445073540647832041592350614273857719119348322752superscript𝑢18\displaystyle 8590727659411750756484396573417334338054622570419879693154450735%40647832041592350614273857719119348322752u^{18}+859072765941175075648439657341733433805462257041987969315445073540647832041592350614273857719119348322752 italic_u start_POSTSUPERSCRIPT 18 end_POSTSUPERSCRIPT +
2043253808780106242301864341366623920410125557270465718105193925121468028580643772742945785695630846250616u17limit-from2043253808780106242301864341366623920410125557270465718105193925121468028580643772742945785695630846250616superscript𝑢17\displaystyle 2043253808780106242301864341366623920410125557270465718105193925%121468028580643772742945785695630846250616u^{17}-2043253808780106242301864341366623920410125557270465718105193925121468028580643772742945785695630846250616 italic_u start_POSTSUPERSCRIPT 17 end_POSTSUPERSCRIPT -
14404591097298766933026514045658981396130495665550053811859476573865203266087239366732093016561473185510947u16+limit-from14404591097298766933026514045658981396130495665550053811859476573865203266087239366732093016561473185510947superscript𝑢16\displaystyle 1440459109729876693302651404565898139613049566555005381185947657%3865203266087239366732093016561473185510947u^{16}+14404591097298766933026514045658981396130495665550053811859476573865203266087239366732093016561473185510947 italic_u start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPT +
53782092893582005220029058318249273753871932757176243019888289181093636039770292877616046638166811259966940u15limit-from53782092893582005220029058318249273753871932757176243019888289181093636039770292877616046638166811259966940superscript𝑢15\displaystyle 5378209289358200522002905831824927375387193275717624301988828918%1093636039770292877616046638166811259966940u^{15}-53782092893582005220029058318249273753871932757176243019888289181093636039770292877616046638166811259966940 italic_u start_POSTSUPERSCRIPT 15 end_POSTSUPERSCRIPT -
141714191860609552880152974953181488990758592963392736886360436531074827537157064474462945606682668819806198u14+limit-from141714191860609552880152974953181488990758592963392736886360436531074827537157064474462945606682668819806198superscript𝑢14\displaystyle 1417141918606095528801529749531814889907585929633927368863604365%31074827537157064474462945606682668819806198u^{14}+141714191860609552880152974953181488990758592963392736886360436531074827537157064474462945606682668819806198 italic_u start_POSTSUPERSCRIPT 14 end_POSTSUPERSCRIPT +
240047352576549909364601700036080390721021411016449659200571917692510750285660599011803164564843128819228182u13limit-from240047352576549909364601700036080390721021411016449659200571917692510750285660599011803164564843128819228182superscript𝑢13\displaystyle 2400473525765499093646017000360803907210214110164496592005719176%92510750285660599011803164564843128819228182u^{13}-240047352576549909364601700036080390721021411016449659200571917692510750285660599011803164564843128819228182 italic_u start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT -
246409147892667969081371710511663624642212560900172422105970223933058322089161814282379652713411140663257935u12+limit-from246409147892667969081371710511663624642212560900172422105970223933058322089161814282379652713411140663257935superscript𝑢12\displaystyle 2464091478926679690813717105116636246422125609001724221059702239%33058322089161814282379652713411140663257935u^{12}+246409147892667969081371710511663624642212560900172422105970223933058322089161814282379652713411140663257935 italic_u start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT +
1660383798745191426479235503825563309445604336426727713515545952965583262056449973559241059379777205167680u11+limit-from1660383798745191426479235503825563309445604336426727713515545952965583262056449973559241059379777205167680superscript𝑢11\displaystyle 1660383798745191426479235503825563309445604336426727713515545952%965583262056449973559241059379777205167680u^{11}+1660383798745191426479235503825563309445604336426727713515545952965583262056449973559241059379777205167680 italic_u start_POSTSUPERSCRIPT 11 end_POSTSUPERSCRIPT +
631030775347331286245374157971855052973255252236141225995944668820543477829364676840720227312527178034180279u10limit-from631030775347331286245374157971855052973255252236141225995944668820543477829364676840720227312527178034180279superscript𝑢10\displaystyle 6310307753473312862453741579718550529732552522361412259959446688%20543477829364676840720227312527178034180279u^{10}-631030775347331286245374157971855052973255252236141225995944668820543477829364676840720227312527178034180279 italic_u start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT -
1373191303164392155556759433957455153048808084186727053603071678098956093708891960388551820759614888919228798u9+limit-from1373191303164392155556759433957455153048808084186727053603071678098956093708891960388551820759614888919228798superscript𝑢9\displaystyle 1373191303164392155556759433957455153048808084186727053603071678%098956093708891960388551820759614888919228798u^{9}+1373191303164392155556759433957455153048808084186727053603071678098956093708891960388551820759614888919228798 italic_u start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT +
1855055200398461753160983358264565827392481715440615201547027651417550399650560016424464748539961643359247984u8limit-from1855055200398461753160983358264565827392481715440615201547027651417550399650560016424464748539961643359247984superscript𝑢8\displaystyle 1855055200398461753160983358264565827392481715440615201547027651%417550399650560016424464748539961643359247984u^{8}-1855055200398461753160983358264565827392481715440615201547027651417550399650560016424464748539961643359247984 italic_u start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT -
1810340272498862598842821857781647927048443171970743903664016426775429620541753412488893145604156221308889189u7+limit-from1810340272498862598842821857781647927048443171970743903664016426775429620541753412488893145604156221308889189superscript𝑢7\displaystyle 1810340272498862598842821857781647927048443171970743903664016426%775429620541753412488893145604156221308889189u^{7}+1810340272498862598842821857781647927048443171970743903664016426775429620541753412488893145604156221308889189 italic_u start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT +
1217447869444335701148390656031690559355995357559324353598131528729900099121544745377288080145013432424025969u6limit-from1217447869444335701148390656031690559355995357559324353598131528729900099121544745377288080145013432424025969superscript𝑢6\displaystyle 1217447869444335701148390656031690559355995357559324353598131528%729900099121544745377288080145013432424025969u^{6}-1217447869444335701148390656031690559355995357559324353598131528729900099121544745377288080145013432424025969 italic_u start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT -
659881384640171955268827667041901915930078235365304518008370381172256477957510173898550948015864022299669197u5+limit-from659881384640171955268827667041901915930078235365304518008370381172256477957510173898550948015864022299669197superscript𝑢5\displaystyle 6598813846401719552688276670419019159300782353653045180083703811%72256477957510173898550948015864022299669197u^{5}+659881384640171955268827667041901915930078235365304518008370381172256477957510173898550948015864022299669197 italic_u start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT +
307790745065637864238088972508370777364970324675620390825060869113848278840109786662025553536904120965133749u4limit-from307790745065637864238088972508370777364970324675620390825060869113848278840109786662025553536904120965133749superscript𝑢4\displaystyle 3077907450656378642380889725083707773649703246756203908250608691%13848278840109786662025553536904120965133749u^{4}-307790745065637864238088972508370777364970324675620390825060869113848278840109786662025553536904120965133749 italic_u start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT -
60820407864453413480654997867064723887609771100315352783514154802538810394027131443053153723537033134034705u3limit-from60820407864453413480654997867064723887609771100315352783514154802538810394027131443053153723537033134034705superscript𝑢3\displaystyle 6082040786445341348065499786706472388760977110031535278351415480%2538810394027131443053153723537033134034705u^{3}-60820407864453413480654997867064723887609771100315352783514154802538810394027131443053153723537033134034705 italic_u start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT -
144052085090685500090236529370732449574337163596926010094713886704776244290981162282467617876786399506180u2limit-from144052085090685500090236529370732449574337163596926010094713886704776244290981162282467617876786399506180superscript𝑢2\displaystyle 1440520850906855000902365293707324495743371635969260100947138867%04776244290981162282467617876786399506180u^{2}-144052085090685500090236529370732449574337163596926010094713886704776244290981162282467617876786399506180 italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT -
1532941290409201639884641559299203829761919399394276833991478025317804391841939489014019720099012115562420u+limit-from1532941290409201639884641559299203829761919399394276833991478025317804391841939489014019720099012115562420𝑢\displaystyle 1532941290409201639884641559299203829761919399394276833991478025%317804391841939489014019720099012115562420u+1532941290409201639884641559299203829761919399394276833991478025317804391841939489014019720099012115562420 italic_u +
509122154320169268414799843064587827388501714062116747477342929300007225772690649217374431742546708122792)\displaystyle 5091221543201692684147998430645878273885017140621167474773429293%00007225772690649217374431742546708122792)509122154320169268414799843064587827388501714062116747477342929300007225772690649217374431742546708122792 )
/64844948270477190660785874513768063850493831568187286946474478550177616396173962709851687997324172200859absent64844948270477190660785874513768063850493831568187286946474478550177616396173962709851687997324172200859\displaystyle/6484494827047719066078587451376806385049383156818728694647447855%0177616396173962709851687997324172200859/ 64844948270477190660785874513768063850493831568187286946474478550177616396173962709851687997324172200859
a6subscript𝑎6\displaystyle a_{6}italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT=(106506330741605109288086249761949577032988062924119045234880864834164563474865266431866700452076560904343u23\displaystyle=(106506330741605109288086249761949577032988062924119045234880864%834164563474865266431866700452076560904343u^{23}-= ( 106506330741605109288086249761949577032988062924119045234880864834164563474865266431866700452076560904343 italic_u start_POSTSUPERSCRIPT 23 end_POSTSUPERSCRIPT -
268621067262922244731742290819473367324966946265012333997527422487122752369679957389804773188189217975040u22+limit-from268621067262922244731742290819473367324966946265012333997527422487122752369679957389804773188189217975040superscript𝑢22\displaystyle 2686210672629222447317422908194733673249669462650123339975274224%87122752369679957389804773188189217975040u^{22}+268621067262922244731742290819473367324966946265012333997527422487122752369679957389804773188189217975040 italic_u start_POSTSUPERSCRIPT 22 end_POSTSUPERSCRIPT +
1137013977320349512141999486325566008661632741982097743275485317535734426904814487385248439054139927647576u21limit-from1137013977320349512141999486325566008661632741982097743275485317535734426904814487385248439054139927647576superscript𝑢21\displaystyle 1137013977320349512141999486325566008661632741982097743275485317%535734426904814487385248439054139927647576u^{21}-1137013977320349512141999486325566008661632741982097743275485317535734426904814487385248439054139927647576 italic_u start_POSTSUPERSCRIPT 21 end_POSTSUPERSCRIPT -
1359734100962858378220386886669806438734127279167679687329284208050999992111901214621559610269099527897058u20+limit-from1359734100962858378220386886669806438734127279167679687329284208050999992111901214621559610269099527897058superscript𝑢20\displaystyle 1359734100962858378220386886669806438734127279167679687329284208%050999992111901214621559610269099527897058u^{20}+1359734100962858378220386886669806438734127279167679687329284208050999992111901214621559610269099527897058 italic_u start_POSTSUPERSCRIPT 20 end_POSTSUPERSCRIPT +
1945268188761932781006249424602429683919722293689218951137492143206602562848341223292127451097837577427055u19limit-from1945268188761932781006249424602429683919722293689218951137492143206602562848341223292127451097837577427055superscript𝑢19\displaystyle 1945268188761932781006249424602429683919722293689218951137492143%206602562848341223292127451097837577427055u^{19}-1945268188761932781006249424602429683919722293689218951137492143206602562848341223292127451097837577427055 italic_u start_POSTSUPERSCRIPT 19 end_POSTSUPERSCRIPT -
2393276829855285236300832480066408795592696499121108227777951838724307749896235005081264299679364417582645u18+limit-from2393276829855285236300832480066408795592696499121108227777951838724307749896235005081264299679364417582645superscript𝑢18\displaystyle 2393276829855285236300832480066408795592696499121108227777951838%724307749896235005081264299679364417582645u^{18}+2393276829855285236300832480066408795592696499121108227777951838724307749896235005081264299679364417582645 italic_u start_POSTSUPERSCRIPT 18 end_POSTSUPERSCRIPT +
5636440654175695560827850572628403926238872648152811703245861566191315889909066700423729024249080646852368u17limit-from5636440654175695560827850572628403926238872648152811703245861566191315889909066700423729024249080646852368superscript𝑢17\displaystyle 5636440654175695560827850572628403926238872648152811703245861566%191315889909066700423729024249080646852368u^{17}-5636440654175695560827850572628403926238872648152811703245861566191315889909066700423729024249080646852368 italic_u start_POSTSUPERSCRIPT 17 end_POSTSUPERSCRIPT -
39537739844160600076735305375085774613311782400090487143195456091160379076939647113129281717859845031880493u16+limit-from39537739844160600076735305375085774613311782400090487143195456091160379076939647113129281717859845031880493superscript𝑢16\displaystyle 3953773984416060007673530537508577461331178240009048714319545609%1160379076939647113129281717859845031880493u^{16}+39537739844160600076735305375085774613311782400090487143195456091160379076939647113129281717859845031880493 italic_u start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPT +
148019707247899680886224373292582479404691793707316624141760495823122199250920962933822955373335955674707505u15limit-from148019707247899680886224373292582479404691793707316624141760495823122199250920962933822955373335955674707505superscript𝑢15\displaystyle 1480197072478996808862243732925824794046917937073166241417604958%23122199250920962933822955373335955674707505u^{15}-148019707247899680886224373292582479404691793707316624141760495823122199250920962933822955373335955674707505 italic_u start_POSTSUPERSCRIPT 15 end_POSTSUPERSCRIPT -
390944903239016634179877118536058514546220287447395813965649454225587344455995848059395553232190423750889714u14+limit-from390944903239016634179877118536058514546220287447395813965649454225587344455995848059395553232190423750889714superscript𝑢14\displaystyle 3909449032390166341798771185360585145462202874473958139656494542%25587344455995848059395553232190423750889714u^{14}+390944903239016634179877118536058514546220287447395813965649454225587344455995848059395553232190423750889714 italic_u start_POSTSUPERSCRIPT 14 end_POSTSUPERSCRIPT +
665169959171520244365024819470531452721654659001468717158107940006910764868144221936179843690171495746867151u13limit-from665169959171520244365024819470531452721654659001468717158107940006910764868144221936179843690171495746867151superscript𝑢13\displaystyle 6651699591715202443650248194705314527216546590014687171581079400%06910764868144221936179843690171495746867151u^{13}-665169959171520244365024819470531452721654659001468717158107940006910764868144221936179843690171495746867151 italic_u start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT -
688133022962755681468154208277465895505070646755994431276111516132454231637364183867194761450409746615512057u12+limit-from688133022962755681468154208277465895505070646755994431276111516132454231637364183867194761450409746615512057superscript𝑢12\displaystyle 6881330229627556814681542082774658955050706467559944312761115161%32454231637364183867194761450409746615512057u^{12}+688133022962755681468154208277465895505070646755994431276111516132454231637364183867194761450409746615512057 italic_u start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT +
18547013883477273436527079771244869139457780178455000291207030647792942254434253530679033647236399863545076u11+limit-from18547013883477273436527079771244869139457780178455000291207030647792942254434253530679033647236399863545076superscript𝑢11\displaystyle 1854701388347727343652707977124486913945778017845500029120703064%7792942254434253530679033647236399863545076u^{11}+18547013883477273436527079771244869139457780178455000291207030647792942254434253530679033647236399863545076 italic_u start_POSTSUPERSCRIPT 11 end_POSTSUPERSCRIPT +
1727571258824689813458949909518392730988641427451135314145457582390528356525372114445693870920521946183125968u10limit-from1727571258824689813458949909518392730988641427451135314145457582390528356525372114445693870920521946183125968superscript𝑢10\displaystyle 1727571258824689813458949909518392730988641427451135314145457582%390528356525372114445693870920521946183125968u^{10}-1727571258824689813458949909518392730988641427451135314145457582390528356525372114445693870920521946183125968 italic_u start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT -
3795550848736154518766013889265263853958641629778360330765324427863117289700584168294491238114713048476467205u9+limit-from3795550848736154518766013889265263853958641629778360330765324427863117289700584168294491238114713048476467205superscript𝑢9\displaystyle 3795550848736154518766013889265263853958641629778360330765324427%863117289700584168294491238114713048476467205u^{9}+3795550848736154518766013889265263853958641629778360330765324427863117289700584168294491238114713048476467205 italic_u start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT +
5156513047494830027630840938409945253924027656738811841516198563878703922645799229211346774948819475873515647u8limit-from5156513047494830027630840938409945253924027656738811841516198563878703922645799229211346774948819475873515647superscript𝑢8\displaystyle 5156513047494830027630840938409945253924027656738811841516198563%878703922645799229211346774948819475873515647u^{8}-5156513047494830027630840938409945253924027656738811841516198563878703922645799229211346774948819475873515647 italic_u start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT -
5061011114440535922256772748616804053723528495298637982080885365202535101405595927759267377757278846727374906u7+limit-from5061011114440535922256772748616804053723528495298637982080885365202535101405595927759267377757278846727374906superscript𝑢7\displaystyle 5061011114440535922256772748616804053723528495298637982080885365%202535101405595927759267377757278846727374906u^{7}+5061011114440535922256772748616804053723528495298637982080885365202535101405595927759267377757278846727374906 italic_u start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT +
3433018553206648789129910985877222365044303100491891917848167429332491962106076102926046515248888543454804836u6limit-from3433018553206648789129910985877222365044303100491891917848167429332491962106076102926046515248888543454804836superscript𝑢6\displaystyle 3433018553206648789129910985877222365044303100491891917848167429%332491962106076102926046515248888543454804836u^{6}-3433018553206648789129910985877222365044303100491891917848167429332491962106076102926046515248888543454804836 italic_u start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT -
1871323727407882096937532677095304025370320599490157355377914172455447663767336731794094213574423386365089049u5+limit-from1871323727407882096937532677095304025370320599490157355377914172455447663767336731794094213574423386365089049superscript𝑢5\displaystyle 1871323727407882096937532677095304025370320599490157355377914172%455447663767336731794094213574423386365089049u^{5}+1871323727407882096937532677095304025370320599490157355377914172455447663767336731794094213574423386365089049 italic_u start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT +
875148120649758262060771046730207356931431242997922830033241180873023842075954538819692035748582850095786175u4limit-from875148120649758262060771046730207356931431242997922830033241180873023842075954538819692035748582850095786175superscript𝑢4\displaystyle 8751481206497582620607710467302073569314312429979228300332411808%73023842075954538819692035748582850095786175u^{4}-875148120649758262060771046730207356931431242997922830033241180873023842075954538819692035748582850095786175 italic_u start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT -
179518449224672853156904084088153183060094218102735320814337912880840832807636239650130243559188053364442169u3+limit-from179518449224672853156904084088153183060094218102735320814337912880840832807636239650130243559188053364442169superscript𝑢3\displaystyle 1795184492246728531569040840881531830600942181027353208143379128%80840832807636239650130243559188053364442169u^{3}+179518449224672853156904084088153183060094218102735320814337912880840832807636239650130243559188053364442169 italic_u start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT +
867499112264962196317713485510502758285657665542739809516282631237157815538071093053477697888868115188962u2limit-from867499112264962196317713485510502758285657665542739809516282631237157815538071093053477697888868115188962superscript𝑢2\displaystyle 8674991122649621963177134855105027582856576655427398095162826312%37157815538071093053477697888868115188962u^{2}-867499112264962196317713485510502758285657665542739809516282631237157815538071093053477697888868115188962 italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT -
2891981098172373318053405115269016185141386151875879691697990113793904535745021005613932188988315702933660u+limit-from2891981098172373318053405115269016185141386151875879691697990113793904535745021005613932188988315702933660𝑢\displaystyle 2891981098172373318053405115269016185141386151875879691697990113%793904535745021005613932188988315702933660u+2891981098172373318053405115269016185141386151875879691697990113793904535745021005613932188988315702933660 italic_u +
1150309215847546183632488145372536747955821185911367078149313606638687782880520756923150814912414789090319)\displaystyle 1150309215847546183632488145372536747955821185911367078149313606%638687782880520756923150814912414789090319)1150309215847546183632488145372536747955821185911367078149313606638687782880520756923150814912414789090319 )
/19453484481143157198235762354130419155148149470456186083942343565053284918852188812955506399197251660257absent19453484481143157198235762354130419155148149470456186083942343565053284918852188812955506399197251660257\displaystyle/1945348448114315719823576235413041915514814947045618608394234356%5053284918852188812955506399197251660257/ 19453484481143157198235762354130419155148149470456186083942343565053284918852188812955506399197251660257

Both of our orbits are defined over the degree 48484848 number field given by

u4832u47+492u464838u45+34136u44184200u43+795782u422871488u41+9027972u4025406816u39+62125865u38110851470u37+20204479u36+896372004u354721050815u34+16331796445u3343395256901u32+78805990590u319062375006u30597966047368u29+2489028250704u285314164476524u27+4247868234838u26+10286452763613u2538984213410246u24+48194438473527u23+34337356474920u22258320740169787u21+493721560145034u20279315253980219u19720711950420342u18+1333301851341148u17+650839726478139u163536530808627111u15+1476853576240844u14+2773228527944145u13+2524087738848453u1210782439856962015u11+1577760701045559u10+10769777804876901u9+3034475537610752u818205883402537385u7+351890944113304u6+18574766492209602u54386446310081687u416132297574659372u3+15821424127424507u26053794543417854u+920504949783049;superscript𝑢4832superscript𝑢47492superscript𝑢464838superscript𝑢4534136superscript𝑢44184200superscript𝑢43795782superscript𝑢422871488superscript𝑢419027972superscript𝑢4025406816superscript𝑢3962125865superscript𝑢38110851470superscript𝑢3720204479superscript𝑢36896372004superscript𝑢354721050815superscript𝑢3416331796445superscript𝑢3343395256901superscript𝑢3278805990590superscript𝑢319062375006superscript𝑢30597966047368superscript𝑢292489028250704superscript𝑢285314164476524superscript𝑢274247868234838superscript𝑢2610286452763613superscript𝑢2538984213410246superscript𝑢2448194438473527superscript𝑢2334337356474920superscript𝑢22258320740169787superscript𝑢21493721560145034superscript𝑢20279315253980219superscript𝑢19720711950420342superscript𝑢181333301851341148superscript𝑢17650839726478139superscript𝑢163536530808627111superscript𝑢151476853576240844superscript𝑢142773228527944145superscript𝑢132524087738848453superscript𝑢1210782439856962015superscript𝑢111577760701045559superscript𝑢1010769777804876901superscript𝑢93034475537610752superscript𝑢818205883402537385superscript𝑢7351890944113304superscript𝑢618574766492209602superscript𝑢54386446310081687superscript𝑢416132297574659372superscript𝑢315821424127424507superscript𝑢26053794543417854𝑢920504949783049u^{48}-32u^{47}+492u^{46}-4838u^{45}+34136u^{44}-184200u^{43}+795782u^{42}-287%1488u^{41}+9027972u^{40}-25406816u^{39}+62125865u^{38}-110851470u^{37}+2020447%9u^{36}+896372004u^{35}-4721050815u^{34}+16331796445u^{33}-43395256901u^{32}+7%8805990590u^{31}-9062375006u^{30}-597966047368u^{29}+2489028250704u^{28}-53141%64476524u^{27}+4247868234838u^{26}+10286452763613u^{25}-38984213410246u^{24}+4%8194438473527u^{23}+34337356474920u^{22}-258320740169787u^{21}+493721560145034%u^{20}-279315253980219u^{19}-720711950420342u^{18}+1333301851341148u^{17}+6508%39726478139u^{16}-3536530808627111u^{15}+1476853576240844u^{14}+27732285279441%45u^{13}+2524087738848453u^{12}-10782439856962015u^{11}+1577760701045559u^{10}%+10769777804876901u^{9}+3034475537610752u^{8}-18205883402537385u^{7}+351890944%113304u^{6}+18574766492209602u^{5}-4386446310081687u^{4}-16132297574659372u^{3%}+15821424127424507u^{2}-6053794543417854u+920504949783049;italic_u start_POSTSUPERSCRIPT 48 end_POSTSUPERSCRIPT - 32 italic_u start_POSTSUPERSCRIPT 47 end_POSTSUPERSCRIPT + 492 italic_u start_POSTSUPERSCRIPT 46 end_POSTSUPERSCRIPT - 4838 italic_u start_POSTSUPERSCRIPT 45 end_POSTSUPERSCRIPT + 34136 italic_u start_POSTSUPERSCRIPT 44 end_POSTSUPERSCRIPT - 184200 italic_u start_POSTSUPERSCRIPT 43 end_POSTSUPERSCRIPT + 795782 italic_u start_POSTSUPERSCRIPT 42 end_POSTSUPERSCRIPT - 2871488 italic_u start_POSTSUPERSCRIPT 41 end_POSTSUPERSCRIPT + 9027972 italic_u start_POSTSUPERSCRIPT 40 end_POSTSUPERSCRIPT - 25406816 italic_u start_POSTSUPERSCRIPT 39 end_POSTSUPERSCRIPT + 62125865 italic_u start_POSTSUPERSCRIPT 38 end_POSTSUPERSCRIPT - 110851470 italic_u start_POSTSUPERSCRIPT 37 end_POSTSUPERSCRIPT + 20204479 italic_u start_POSTSUPERSCRIPT 36 end_POSTSUPERSCRIPT + 896372004 italic_u start_POSTSUPERSCRIPT 35 end_POSTSUPERSCRIPT - 4721050815 italic_u start_POSTSUPERSCRIPT 34 end_POSTSUPERSCRIPT + 16331796445 italic_u start_POSTSUPERSCRIPT 33 end_POSTSUPERSCRIPT - 43395256901 italic_u start_POSTSUPERSCRIPT 32 end_POSTSUPERSCRIPT + 78805990590 italic_u start_POSTSUPERSCRIPT 31 end_POSTSUPERSCRIPT - 9062375006 italic_u start_POSTSUPERSCRIPT 30 end_POSTSUPERSCRIPT - 597966047368 italic_u start_POSTSUPERSCRIPT 29 end_POSTSUPERSCRIPT + 2489028250704 italic_u start_POSTSUPERSCRIPT 28 end_POSTSUPERSCRIPT - 5314164476524 italic_u start_POSTSUPERSCRIPT 27 end_POSTSUPERSCRIPT + 4247868234838 italic_u start_POSTSUPERSCRIPT 26 end_POSTSUPERSCRIPT + 10286452763613 italic_u start_POSTSUPERSCRIPT 25 end_POSTSUPERSCRIPT - 38984213410246 italic_u start_POSTSUPERSCRIPT 24 end_POSTSUPERSCRIPT + 48194438473527 italic_u start_POSTSUPERSCRIPT 23 end_POSTSUPERSCRIPT + 34337356474920 italic_u start_POSTSUPERSCRIPT 22 end_POSTSUPERSCRIPT - 258320740169787 italic_u start_POSTSUPERSCRIPT 21 end_POSTSUPERSCRIPT + 493721560145034 italic_u start_POSTSUPERSCRIPT 20 end_POSTSUPERSCRIPT - 279315253980219 italic_u start_POSTSUPERSCRIPT 19 end_POSTSUPERSCRIPT - 720711950420342 italic_u start_POSTSUPERSCRIPT 18 end_POSTSUPERSCRIPT + 1333301851341148 italic_u start_POSTSUPERSCRIPT 17 end_POSTSUPERSCRIPT + 650839726478139 italic_u start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPT - 3536530808627111 italic_u start_POSTSUPERSCRIPT 15 end_POSTSUPERSCRIPT + 1476853576240844 italic_u start_POSTSUPERSCRIPT 14 end_POSTSUPERSCRIPT + 2773228527944145 italic_u start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT + 2524087738848453 italic_u start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT - 10782439856962015 italic_u start_POSTSUPERSCRIPT 11 end_POSTSUPERSCRIPT + 1577760701045559 italic_u start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT + 10769777804876901 italic_u start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT + 3034475537610752 italic_u start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT - 18205883402537385 italic_u start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT + 351890944113304 italic_u start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT + 18574766492209602 italic_u start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT - 4386446310081687 italic_u start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - 16132297574659372 italic_u start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + 15821424127424507 italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 6053794543417854 italic_u + 920504949783049 ;

and as in the previous example, we reduce modulo a prime of good reduction to verify that the two orbits listed above generate the entire 3limit-from33-3 -torsion subgroup J[3](/3)6𝐽delimited-[]3superscript36J\left[3\right]\cong\left(\mathbb{Z}/3\right)^{6}italic_J [ 3 ] ≅ ( blackboard_Z / 3 ) start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT.

7. Local Conductor Exponents

A interesting application of these calculations is to compute local conductor exponents.

Let C𝐶Citalic_C be any smooth, projective curve of genus g𝑔gitalic_g defined over \mathbb{Q}blackboard_Q. The conductor of C𝐶Citalic_C is an arithmetic invariant of the curve, defined as a product over the primes of bad reduction for the curve. The problem of computing conductors is essentially the problem of computing the local conductor exponent npsubscript𝑛𝑝n_{p}italic_n start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT at each primes of bad reduction for the curve.

For elliptic curves, Tate’s algorithm [18] gives a complete resolution of the problem. This is also completely solved in the genus 2222 case by combining the cluster picture method described in [9] for p3𝑝3p\geq 3italic_p ≥ 3 with the algorithm of Dokchitser-Doris in [10] for p=2𝑝2p=2italic_p = 2. In fact the results of [9] hold more generally for hyperelliptic curves and p3𝑝3p\geq 3italic_p ≥ 3. In [15], the method of [10] was generalised to compute part of n2subscript𝑛2n_{2}italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT for hyperelliptic curves of genus 3333. Following [10], we explain how the 3limit-from33-3 -torsion subgroup of the Jacobian can be used to compute the wild part of n2subscript𝑛2n_{2}italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.

Below, we give an overview of relevant definitions and results, see [22] for details.

To compute npsubscript𝑛𝑝n_{p}italic_n start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT, we view C𝐶Citalic_C as a smooth projective curve over psubscript𝑝\mathbb{Q}_{p}blackboard_Q start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT, let J𝐽Jitalic_J be the Jacobian variety associated to C𝐶Citalic_C and for a prime lp𝑙𝑝l\neq pitalic_l ≠ italic_p let T=TlJ𝑇subscript𝑇𝑙𝐽T=T_{l}Jitalic_T = italic_T start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT italic_J and V=Tll𝑉subscripttensor-productsubscript𝑙𝑇subscript𝑙V=T\otimes_{\mathbb{Z}_{l}}\mathbb{Q}_{l}italic_V = italic_T ⊗ start_POSTSUBSCRIPT blackboard_Z start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT end_POSTSUBSCRIPT blackboard_Q start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT be the associated llimit-from𝑙l-italic_l -adic Tate module and llimit-from𝑙l-italic_l -adic representation respectively. Then npsubscript𝑛𝑝n_{p}italic_n start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT is the Artin conductor of V𝑉Vitalic_V defined as follows

np=i=0codimVGi[G0:Gi]subscript𝑛𝑝superscriptsubscript𝑖0codimsuperscript𝑉subscript𝐺𝑖delimited-[]:subscript𝐺0subscript𝐺𝑖n_{p}=\displaystyle\sum_{i=0}^{\infty}\frac{\text{codim}V^{G_{i}}}{[G_{0}:G_{i%}]}italic_n start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG codim italic_V start_POSTSUPERSCRIPT italic_G start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG start_ARG [ italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT : italic_G start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ] end_ARG

where {Gi}i1subscriptsubscript𝐺𝑖𝑖1\{G_{i}\}_{i\geq-1}{ italic_G start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_i ≥ - 1 end_POSTSUBSCRIPT are the ramification subgroups G=Gal(¯p/p)𝐺Galsubscript¯𝑝subscript𝑝G=\text{Gal}\left(\bar{\mathbb{Q}}_{p}/\mathbb{Q}_{p}\right)italic_G = Gal ( over¯ start_ARG blackboard_Q end_ARG start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT / blackboard_Q start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) in lower numbering, defined as

σGivp(σ(x)x)i+1xpiff𝜎subscript𝐺𝑖subscript𝑣𝑝𝜎𝑥𝑥𝑖1for-all𝑥subscript𝑝\sigma\in G_{i}\iff v_{p}\left(\sigma\left(x\right)-x\right)\geq i+1\ \forall x%\in\mathbb{Z}_{p}italic_σ ∈ italic_G start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ⇔ italic_v start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_σ ( italic_x ) - italic_x ) ≥ italic_i + 1 ∀ italic_x ∈ blackboard_Z start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT

The definition is independent of the choice of prime l𝑙litalic_l.

For computational purposes, it’s convenient to break up the above quantity into two parts. First, we observe that G0=Isubscript𝐺0𝐼G_{0}=Iitalic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_I is the inertia subgroup, and define the ‘tame part’ of npsubscript𝑛𝑝n_{p}italic_n start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT as

np,tame=2gdimVIsubscript𝑛𝑝tame2𝑔dimsuperscript𝑉𝐼n_{p,\text{tame}}=2g-\text{dim}V^{I}italic_n start_POSTSUBSCRIPT italic_p , tame end_POSTSUBSCRIPT = 2 italic_g - dim italic_V start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT.

This is computable directly from the regular model of the curve over lsubscript𝑙\mathbb{Z}_{l}blackboard_Z start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT, as we can deduce the following invariants:

  • the abelian part a𝑎aitalic_a, equal to the sum of the genera of all components of the model,

  • the toric part t𝑡titalic_t, equal to the number of loops in the dual graph of C𝐶Citalic_C.

The tame part of the exponent is equal to 2g2at2𝑔2𝑎𝑡2g-2a-t2 italic_g - 2 italic_a - italic_t, see [2, Chapter 9] for details. Regular models can be computed in principle by taking any model of the curve and performing repeated blowups until it becomes regular or by computing a ΔνsubscriptΔ𝜈\Delta_{\nu}roman_Δ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT-regular model as in [8].

The second part of the conductor exponent is the ‘wild part’, defined as

np,wild=i=1codimVGi[G0:Gi]subscript𝑛𝑝wildsuperscriptsubscript𝑖1codimsuperscript𝑉subscript𝐺𝑖delimited-[]:subscript𝐺0subscript𝐺𝑖n_{p,\text{wild}}=\displaystyle\sum_{i=1}^{\infty}\frac{\text{codim}V^{G_{i}}}%{[G_{0}:G_{i}]}italic_n start_POSTSUBSCRIPT italic_p , wild end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG codim italic_V start_POSTSUPERSCRIPT italic_G start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG start_ARG [ italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT : italic_G start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ] end_ARG.

The above sum is, in fact, finite since Gi=0subscript𝐺𝑖0G_{i}=0italic_G start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 0 for sufficiently large i𝑖iitalic_i. Also, for i1𝑖1i\geq 1italic_i ≥ 1, Gisubscript𝐺𝑖G_{i}italic_G start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is pro-p and codimVGi=codimV¯Gi=codimJ[l]Gicodimsuperscript𝑉subscript𝐺𝑖codimsuperscript¯𝑉subscript𝐺𝑖codim𝐽superscriptdelimited-[]𝑙subscript𝐺𝑖\text{codim}V^{G_{i}}=\text{codim}\bar{V}^{G_{i}}=\text{codim}J\left[l\right]^%{G_{i}}codim italic_V start_POSTSUPERSCRIPT italic_G start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = codim over¯ start_ARG italic_V end_ARG start_POSTSUPERSCRIPT italic_G start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = codim italic_J [ italic_l ] start_POSTSUPERSCRIPT italic_G start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT, hence the wild conductor exponent is:

np,wild=i=1codimJ[l]Gi[G0:Gi]subscript𝑛𝑝wildsuperscriptsubscript𝑖1codim𝐽superscriptdelimited-[]𝑙subscript𝐺𝑖delimited-[]:subscript𝐺0subscript𝐺𝑖n_{p,\text{wild}}=\displaystyle\sum_{i=1}^{\infty}\frac{\text{codim}J\left[l%\right]^{G_{i}}}{[G_{0}:G_{i}]}italic_n start_POSTSUBSCRIPT italic_p , wild end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG codim italic_J [ italic_l ] start_POSTSUPERSCRIPT italic_G start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG start_ARG [ italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT : italic_G start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ] end_ARG.

Thus for a give curve explicitly knowing J[2]𝐽delimited-[]2J\left[2\right]italic_J [ 2 ] and J[3]𝐽delimited-[]3J\left[3\right]italic_J [ 3 ] is sufficient to determine all np,wildsubscript𝑛𝑝wildn_{p,\text{wild}}italic_n start_POSTSUBSCRIPT italic_p , wild end_POSTSUBSCRIPT.

Finding np,wildsubscript𝑛𝑝wildn_{p,\text{wild}}italic_n start_POSTSUBSCRIPT italic_p , wild end_POSTSUBSCRIPT for p3𝑝3p\geq 3italic_p ≥ 3 is computationally a much simpler problem; one could apply the method described above to the 2222-torsion subgroup, for which there is an explicit description.For a plane quartic C𝐶Citalic_C, one could explicitly compute J[2]𝐽delimited-[]2J\left[2\right]italic_J [ 2 ] and hence np,wildsubscript𝑛𝑝wildn_{p,\text{wild}}italic_n start_POSTSUBSCRIPT italic_p , wild end_POSTSUBSCRIPT for p3𝑝3p\geq 3italic_p ≥ 3 using the bitangent lines to the curve, and for p=2𝑝2p=2italic_p = 2 the wild conductor exponent can be determined using our explicit description of the 3limit-from33-3 -torsion subgroup.

8. Local Conductor Exponents at 2222 of the Fermat and Klein Quartics

We set l=3𝑙3l=3italic_l = 3 in the previous section and compute n2subscript𝑛2n_{2}italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT in our examples. All of our computation are done in Magma, using the ‘Local Arithmetic Fields’ implementation [3].

8.1. The Fermat Quartic

Let G=Gal(2(f)/2)𝐺Galsubscript2𝑓subscript2G=\operatorname{Gal}\left(\mathbb{Q}_{2}\left(f\right)/\mathbb{Q}_{2}\right)italic_G = roman_Gal ( blackboard_Q start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_f ) / blackboard_Q start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ), where f𝑓fitalic_f is the defining polynomial of K𝐾Kitalic_K from Section 5, and {Gi}i1subscriptsubscript𝐺𝑖𝑖1\{G_{i}\}_{i\geq-1}{ italic_G start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_i ≥ - 1 end_POSTSUBSCRIPT the ramification groups in lower numbering. Using Magma, we find that G𝐺Gitalic_G is generated by five elements, σ1,,σ5subscript𝜎1subscript𝜎5\sigma_{1},\ldots,\sigma_{5}italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_σ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT, where σ1,σ2subscript𝜎1subscript𝜎2\sigma_{1},\sigma_{2}italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_σ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT have order 3, and σ3,σ4,σ5subscript𝜎3subscript𝜎4subscript𝜎5\sigma_{3},\sigma_{4},\sigma_{5}italic_σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT , italic_σ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT , italic_σ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT have order 2. The ramification groups are as follows

G0=G1=<σ1,σ2,σ4,σ5>,\displaystyle G_{0}=G_{1}=<\sigma_{1},\sigma_{2},\sigma_{4},\sigma_{5}>,italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = < italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_σ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_σ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT , italic_σ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT > ,
G2=G3=<σ4,σ5>,\displaystyle G_{2}=G_{3}=<\sigma_{4},\sigma_{5}>,italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_G start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = < italic_σ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT , italic_σ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT > ,
G4=G5=G6=G7=<σ5>,subscript𝐺4subscript𝐺5subscript𝐺6subscript𝐺7expectationsubscript𝜎5\displaystyle G_{4}=G_{5}=G_{6}=G_{7}=<\sigma_{5}>,italic_G start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT = italic_G start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT = italic_G start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT = italic_G start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT = < italic_σ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT > ,
Gn=1for alln8,subscript𝐺𝑛1for all𝑛8\displaystyle G_{n}=1\ \text{for all}\ n\geq 8,italic_G start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = 1 for all italic_n ≥ 8 ,

and |G0|=16,|G2|=4,|G4|=2formulae-sequencesubscript𝐺016formulae-sequencesubscript𝐺24subscript𝐺42|G_{0}|=16,|G_{2}|=4,|G_{4}|=2| italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT | = 16 , | italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT | = 4 , | italic_G start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT | = 2. We compute the Galois action on the 3333-torsion subgroup by computing the action of the generators on the roots of the minimal polynomials defining our 3333-torsion orbits. We find

J[3]G0=J[3]G2={0},𝐽superscriptdelimited-[]3subscript𝐺0𝐽superscriptdelimited-[]3subscript𝐺20\displaystyle J[3]^{G_{0}}=J[3]^{G_{2}}=\{0\},italic_J [ 3 ] start_POSTSUPERSCRIPT italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = italic_J [ 3 ] start_POSTSUPERSCRIPT italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = { 0 } ,
J[3]G4(/3)4.𝐽superscriptdelimited-[]3subscript𝐺4superscript34\displaystyle J[3]^{G_{4}}\cong\left(\mathbb{Z}/3\mathbb{Z}\right)^{4}.italic_J [ 3 ] start_POSTSUPERSCRIPT italic_G start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ≅ ( blackboard_Z / 3 blackboard_Z ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT .

From the formula, we compute the wild conductor exponent at 2222 to be

n2,wild=6+264+428=10subscript𝑛2wild626442810n_{2,\text{wild}}=6+2\frac{6}{4}+4\frac{2}{8}=10italic_n start_POSTSUBSCRIPT 2 , wild end_POSTSUBSCRIPT = 6 + ⁤ 2 divide start_ARG 6 end_ARG start_ARG 4 end_ARG + ⁤ 4 divide start_ARG 2 end_ARG start_ARG 8 end_ARG = 10.

Observe that as J[3]G0={0}𝐽superscriptdelimited-[]3subscript𝐺00J[3]^{G_{0}}=\{0\}italic_J [ 3 ] start_POSTSUPERSCRIPT italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = { 0 }, since the 3-adic Tate module maps onto the 3 torsion, VG0={0}superscript𝑉subscript𝐺00V^{G_{0}}=\{0\}italic_V start_POSTSUPERSCRIPT italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = { 0 } and so the tame part of the conductor is 6. Combining this gives the conductor exponent at 2 as n2=16subscript𝑛216n_{2}=16italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 16.In this example, we can verify our computation using the the modular structure of the Fermat quartic. The curve is isomorphic to X0(64)subscript𝑋064X_{0}(64)italic_X start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( 64 ), and there are 3 cusp forms of this level and weight 2, two copies of the cusp form of level 32 and one of level 64. The conductors of these forms are the conductors of the corresponding elliptic curves arising in the Jacobian. Moreover, since the tame and wild parts of the conductor are preserved by the rational isogeny, the conductor exponent of the Fermat quartic is the sum of the 3 conductor exponents of the elliptic curves, which is 5+5+6=16556165+5+6=165 + 5 + 6 = 16 in this case.

8.2. The Klein Quartic

We start by computing the conductor at 2. Since the number field defined by f𝑓fitalic_f, as in Section 6, is unramified above 2, the ramification groups beyond G0subscript𝐺0G_{0}italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT are trivial. In particular, the wild conductor at 2 is trivial. This is to be expected, since the curve is known to have good reduction at 2, and so has trivial conductor at 2. Instead, we demonstrate the method at 7, the only bad prime for this curve. Let G=Gal(7(f)/7)𝐺Galsubscript7𝑓subscript7G=\mathrm{Gal}(\mathbb{Q}_{7}(f)/\mathbb{Q}_{7})italic_G = roman_Gal ( blackboard_Q start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT ( italic_f ) / blackboard_Q start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT ), where f𝑓fitalic_f is the defining polynomial of K𝐾Kitalic_K from Section 6. We denote the ramification groups in the lower numbering by {Gi}i1subscriptsubscript𝐺𝑖𝑖1\{G_{i}\}_{i\geq-1}{ italic_G start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_i ≥ - 1 end_POSTSUBSCRIPT. As G𝐺Gitalic_G has order 24, which is coprime to 7, G1subscript𝐺1G_{1}italic_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is trivial since it is a 7777-group. This shows the wild conductor is again, trivial.

As in the previous example, we compute that J[3]G0={0}𝐽superscriptdelimited-[]3subscript𝐺00J[3]^{G_{0}}=\{0\}italic_J [ 3 ] start_POSTSUPERSCRIPT italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = { 0 }, and so there are no non-trivial fixed points of the Tate module. This shows n2,tame=6subscript𝑛2tame6n_{2,\mathrm{tame}}=6italic_n start_POSTSUBSCRIPT 2 , roman_tame end_POSTSUBSCRIPT = 6.

As in the case of the Fermat quartic, this can be deduced from the well understood theory of this curve. The Jacobian of the Klein quartic is isogenous to the cube of an elliptic curve with CM by (7)7\mathbb{Q}(\sqrt{-7})blackboard_Q ( square-root start_ARG - 7 end_ARG ) [12]. This elliptic curve has conductor 72superscript727^{2}7 start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, and so n7=2×3=6subscript𝑛7236n_{7}=2\times 3=6italic_n start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT = 2 × 3 = 6. Moreover, as the conductor of the elliptic curve is all tame, the same is true of the Klein quartic, as noted above.

References

  • [1]J.Bezanson, A.Edelman, S.Karpinski, and V.B. Shah.Julia: A fresh approach to numerical computing.SIAM review, 59(1):65–98, 2017.
  • [2]S.Bosch, W.Lütkebohmert, and M.Raynaud.Néron models, volume21.Springer Science & Business Media, 2012.
  • [3]W.Bosma, J.Cannon, and C.Playoust.The Magma algebra system. I. The user language.J. Symbolic Comput., 24(3-4):235–265, 1997.Computational algebra and number theory (London, 1993).
  • [4]P.Breiding and S.Timme.hom*otopyContinuation.jl: A Package for hom*otopyContinuation in Julia.In International Congress on Mathematical Software, pages458–465. Springer, 2018.
  • [5]N.Bruin, E.V. Flynn, and D.Testa.Descent via (3, 3)-isogeny on jacobians of genus 2 curves.arXiv preprint arXiv:1401.0580, 2014.
  • [6]N.Bruin and M.Stoll.Two-cover descent on hyperelliptic curves.Math. Comp., 78(268):2347–2370, 2009.
  • [7]H.Cohen.A course in computational algebraic number theory, volume 138of Graduate Texts in Mathematics.Springer-Verlag, Berlin, 1993.
  • [8]T.Dokchitser.Models of curves over dvrs, 2021.
  • [9]T.Dokchitser, V.Dokchitser, C.Maistret, and A.Morgan.Arithmetic of hyperelliptic curves over local fields, 2018.
  • [10]T.Dokchitser and C.Doris.3-torsion and conductor of genus 2 curves.Mathematics of Computation, 88(318):1913–1927, 2019.
  • [11]I.V. Dolgachev.Classical algebraic geometry.Cambridge University Press, Cambridge, 2012.A modern view.
  • [12]N.D. Elkies.The klein quartic in number theory.In The Eightfold Way: The Beauty of Klein’s Quartic Curve.Cambridge University Press, 2001.
  • [13]A.Girard.Invention nouvelle en l’algèbre.Bierens de Haan, 1884 (reprint).
  • [14]N.M. Katz.Galois properties of torsion points on abelian varieties.Invent. Math., 62(3):481–502, 1981.
  • [15]E.Lupoian.Three-torsion subgroups and conductors of genus 3 hyperellipticcurves, 2023.
  • [16]E.Lupoian.Two-torsion subgroups of some modular jacobians, 2023.
  • [17]B.Mazur.Modular curves and the eisenstein ideal.Publications Mathématiques de l’Institut des HautesÉtudes Scientifiques, 47(1):33–186, 1977.
  • [18]J.H. Silverman.Advanced topics in the arithmetic of elliptic curves, volume151.Springer Science & Business Media, 1994.
  • [19]N.P. Smart.The algorithmic resolution of Diophantine equations,volume41 of London Mathematical Society Student Texts.Cambridge University Press, Cambridge, 1998.
  • [20]W.A. Stein.Recognizing rational numbers from their decimal expansion.https://wstein.org/edu/2007/spring/ent/ent-html/node74.html,2007.Accessed 22/01/24.
  • [21]J.Stoer, R.Bulirsch, R.Bartels, W.Gautschi, and C.Witzgall.Introduction to numerical analysis, volume 1993.Springer, 1980.
  • [22]D.Ulmer.Conductors of l-adic representations.Proceedings of the American Mathematical Society,144:2291–2299, 2016.
  • [23]J.Verschelde.hom*otopy continuation methods for solving polynomial systems.1998.
3-torsion Subgroups of Jacobians of Plane Quartics (2024)
Top Articles
Latest Posts
Article information

Author: Kelle Weber

Last Updated:

Views: 6048

Rating: 4.2 / 5 (73 voted)

Reviews: 80% of readers found this page helpful

Author information

Name: Kelle Weber

Birthday: 2000-08-05

Address: 6796 Juan Square, Markfort, MN 58988

Phone: +8215934114615

Job: Hospitality Director

Hobby: tabletop games, Foreign language learning, Leather crafting, Horseback riding, Swimming, Knapping, Handball

Introduction: My name is Kelle Weber, I am a magnificent, enchanting, fair, joyous, light, determined, joyous person who loves writing and wants to share my knowledge and understanding with you.